Guidelines for the Safe Packing and Handling of Cargo to and from Offshore Locations

Issue 4
November 2008
Guidelines for

THE SAFE PACKING AND HANDLING OF CARGO TO AND FROM OFFSHORE LOCATIONS

ISSUE 4

NOVEMBER 2008

Whilst every effort has been made to ensure the accuracy of the information contained in this publication neither Oil & Gas UK nor any of its members will assume liability for any use made thereof.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers.

Crown copyright material is reproduced with the permission of the Controller of Her Majesty's Stationery Office.

Copyright © 2008 Oil & Gas UK
CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>PREFACE</td>
</tr>
<tr>
<td>2.0</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>3.0</td>
<td>SCOPE AND APPLICATION</td>
</tr>
<tr>
<td>4.0</td>
<td>ABBREVIATIONS</td>
</tr>
<tr>
<td>5.0</td>
<td>REFERENCES</td>
</tr>
<tr>
<td>6.0</td>
<td>RESPONSIBILITIES AND DUTIES</td>
</tr>
<tr>
<td>6.1</td>
<td>Vendors</td>
</tr>
<tr>
<td>6.2</td>
<td>Haulage Contractors</td>
</tr>
<tr>
<td>6.3</td>
<td>Logistics Service Providers</td>
</tr>
<tr>
<td>6.4</td>
<td>Vessel Operators</td>
</tr>
<tr>
<td>6.5</td>
<td>Aircraft Operators</td>
</tr>
<tr>
<td>6.6</td>
<td>Offshore Operators</td>
</tr>
<tr>
<td>7.0</td>
<td>DROPPED OBJECTS</td>
</tr>
<tr>
<td>7.1</td>
<td>Checking for Dropped Objects</td>
</tr>
<tr>
<td>8.0</td>
<td>LIFTING AND SLINGING</td>
</tr>
<tr>
<td>8.1</td>
<td>Lifting Operations</td>
</tr>
<tr>
<td>8.2</td>
<td>The Organisation of Lifting Operations</td>
</tr>
<tr>
<td>8.3</td>
<td>Undertaking the Lifting Operation</td>
</tr>
<tr>
<td>8.4</td>
<td>Lifting Arrangements</td>
</tr>
<tr>
<td>9.0</td>
<td>CCU CARGO GUIDANCE</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>9.2</td>
<td>General</td>
</tr>
<tr>
<td>9.3</td>
<td>Cargo Handling and Shipping Equipment</td>
</tr>
<tr>
<td>9.4</td>
<td>General Checks for Open and Closed CCUs</td>
</tr>
<tr>
<td>9.5</td>
<td>General Checks for Specialist Equipment</td>
</tr>
<tr>
<td>9.6</td>
<td>Packing Cargo in CCUs</td>
</tr>
<tr>
<td>9.7</td>
<td>Closed Container – Key Points from Checklist</td>
</tr>
<tr>
<td>9.8</td>
<td>Open Container – Key Points from Checklist</td>
</tr>
<tr>
<td>9.9</td>
<td>Snagging Hazards</td>
</tr>
<tr>
<td>9.10</td>
<td>CCU Standards and Inspection Requirements</td>
</tr>
<tr>
<td>9.11</td>
<td>Marking</td>
</tr>
<tr>
<td>9.12</td>
<td>Expiry of Test Certificate(s) whilst Unit(s) Offshore</td>
</tr>
<tr>
<td>9.13</td>
<td>Types of CCUs</td>
</tr>
<tr>
<td>10.0</td>
<td>CARRIAGE OF GOODS BY AIR</td>
</tr>
<tr>
<td>10.1</td>
<td>Freight Classifications</td>
</tr>
<tr>
<td>10.2</td>
<td>General Guidance and Freight Packaging</td>
</tr>
<tr>
<td>11.0</td>
<td>NON CONFORMING CARGO</td>
</tr>
<tr>
<td>11.1</td>
<td>Inspection Procedures</td>
</tr>
<tr>
<td>11.2</td>
<td>Cargo Unfit for Shipment</td>
</tr>
<tr>
<td>11.3</td>
<td>Non Conformance Code</td>
</tr>
</tbody>
</table>
1.0 PREFACE

An original workgroup comprising ASCO, BP Amoco (now BP), Gulf Offshore, Seaforth Maritime, Shell, Swire and Texaco was established by the Marine Safety Forum (MSF) to consider the hazards and risks associated with the safe packaging and handling of cargo to and from offshore installations. The objective of the workgroup was to identify areas where additional guidance would help to secure improvements in safety.

In accordance with the three-year review strategy, a new workgroup (see Cross Industry Workgroup section) was formed to develop the document beyond the original focus, taking into consideration changes in legislation, good working practices and learnings from incidents.

The group acknowledges the assistance given in the preparation of this guidance document by the following bodies:

- Chamber of Shipping (CoS)
- Health and Safety Executive (HSE)
- Helideck Certification Agency Ltd (HCA)
- International Association of Drilling Contractors North Sea Chapter (IADC)
- Maritime and Coastguard Agency (MCA)
- Oil & Gas UK
- Wells Services Contractors Association (WSCA)

The safe carriage of goods relies upon the correct packaging, securing, labelling and handling procedures. Operators, logistics service providers, aircraft operators, shipping and vendor companies have produced this guidance, which provides practical advice. If there is doubt, the reader should always consult the primary reference.

Specific manual and mechanical handling activities associated with cargo handling are not included in this guidance. They should form part of individual company’s Safety Management Systems.

In order to ensure the currency of these Guidelines, the workgroup will meet to review them at intervals not exceeding three years, and reissue accordingly.

This revision 4 replaces revision 3 issued November 2005.
2.0 INTRODUCTION

2.1 The main thrust of the document is to provide an overview of the key processes involved in the safe handling of cargo and is supported by Appendices containing recommended working practices.

2.2 Alternative practices should only be adopted where they would guarantee an equivalent or greater level of safety.

2.3 Cargo both on and offshore may be subject to inspection checks. Non-conformance with these guidelines WILL result in cargo NOT being forwarded until the necessary remedial actions have been carried out in conjunction with the relevant company. See Section 11, Non Conforming Cargo.
3.0 SCOPE AND APPLICATION

3.1 The purpose of these guidelines is to assist the following parties involved in the movement of cargo to or from offshore installations:
- Vendors
- Haulage Contractors
- Logistics Service Providers
- Vessel Operators
- Aircraft Operators
- Offshore Operators

to recognise the hazards involved in the packaging and handling of cargo during normal operations, and to avoid or reduce the associated risks by the adoption of common industry standards.

3.2 The guidelines apply to the safe packing and handling of cargo to and from offshore locations in support of operations on the United Kingdom Continental Shelf (UKCS) or elsewhere if adopted. Where these guidelines refer to Master or Offshore Installation Manager (OIM) this also includes their nominated representatives.

3.3 Users of these guidelines must pay regard to any relevant legislation or authoritative recommendations which have evolved subsequently to the date of publication or during the life of this edition. These guidelines include references to relevant legislation. See Section 5, References.

3.4 In the absence of appropriate legislation, relevant bodies may use these guidelines to assist in their investigation which could lead to disciplinary action or criminal proceedings.
4.0 ABBREVIATIONS

<table>
<thead>
<tr>
<th>Initials</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR</td>
<td>Accord Dangereux Routiers (European Standard on Dangerous Goods Transportation)</td>
</tr>
<tr>
<td>BOP</td>
<td>Blow Out Preventer</td>
</tr>
<tr>
<td>BS EN</td>
<td>British Standard Europenne Norme</td>
</tr>
<tr>
<td>CCU</td>
<td>Cargo Carrying Unit</td>
</tr>
<tr>
<td>CoG</td>
<td>Centre of Gravity</td>
</tr>
<tr>
<td>CoS</td>
<td>Chamber of Shipping</td>
</tr>
<tr>
<td>CSC</td>
<td>Cargo Security Certificate</td>
</tr>
<tr>
<td>DfT</td>
<td>Department of Transport</td>
</tr>
<tr>
<td>DGR</td>
<td>Dangerous Goods Regulations</td>
</tr>
<tr>
<td>DG</td>
<td>Dangerous Good</td>
</tr>
<tr>
<td>DNV</td>
<td>Det Norske Veritas</td>
</tr>
<tr>
<td>EA</td>
<td>Environment Agency</td>
</tr>
<tr>
<td>EWC</td>
<td>European Waste Catalogue</td>
</tr>
<tr>
<td>HCA</td>
<td>Helideck Certification Agency Ltd</td>
</tr>
<tr>
<td>HLO</td>
<td>Helicopter Landing Officer</td>
</tr>
<tr>
<td>HSE</td>
<td>Health and Safety Executive</td>
</tr>
<tr>
<td>IADC</td>
<td>International Association of Drilling Contractors (North Sea Chapter)</td>
</tr>
<tr>
<td>IATA</td>
<td>International Civil Air Transport Association</td>
</tr>
<tr>
<td>ICAO</td>
<td>International Civil Aviation Organisation</td>
</tr>
<tr>
<td>IMDG</td>
<td>International Maritime Dangerous Goods Code</td>
</tr>
<tr>
<td>IMO</td>
<td>International Maritime Organisation</td>
</tr>
<tr>
<td>LMC</td>
<td>Last Minute Change</td>
</tr>
<tr>
<td>LOLER</td>
<td>Lifting Operations and Lifting Equipment Regulations</td>
</tr>
<tr>
<td>MARPOL</td>
<td>International Maritime Organisation Convention for the Prevention of Pollution from Ships</td>
</tr>
<tr>
<td>MCA</td>
<td>Maritime and Coastguard Agency</td>
</tr>
<tr>
<td>MCAA</td>
<td>Marine Competent Authority Approval</td>
</tr>
<tr>
<td>MEGC</td>
<td>Multiple Element Gas Container</td>
</tr>
<tr>
<td>MGN</td>
<td>Marine Guidance Note</td>
</tr>
<tr>
<td>MSF</td>
<td>Marine Safety Forum</td>
</tr>
<tr>
<td>NOTOC</td>
<td>Notification to Captain</td>
</tr>
<tr>
<td>Initials</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>NUI</td>
<td>Normally Unattended Installation</td>
</tr>
<tr>
<td>OIM</td>
<td>Offshore Installation Manager</td>
</tr>
<tr>
<td>PV</td>
<td>Pressure Vacuum</td>
</tr>
<tr>
<td>SADIE</td>
<td>Safety Alert Data Information Exchange</td>
</tr>
<tr>
<td>SEPA</td>
<td>Scottish Environmental Protection Agency</td>
</tr>
<tr>
<td>SWL</td>
<td>Safe Working Load</td>
</tr>
<tr>
<td>TPEC</td>
<td>Temporary Portable Equipment Certificate</td>
</tr>
<tr>
<td>TREM Card</td>
<td>Transport Emergency Report Card</td>
</tr>
<tr>
<td>TRIC</td>
<td>Task Risk Identification Checklist</td>
</tr>
<tr>
<td>UKOOA</td>
<td>United Kingdom Offshore Operators Association (now Oil & Gas UK)</td>
</tr>
<tr>
<td>UKCS</td>
<td>United Kingdom Continental Shelf</td>
</tr>
<tr>
<td>VCOC</td>
<td>Vendor’s Certificate of Conformity</td>
</tr>
<tr>
<td>WLL</td>
<td>Working Load Limit</td>
</tr>
<tr>
<td>WSCA</td>
<td>Well Services Contractors Association</td>
</tr>
</tbody>
</table>
References

<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approval of Offshore Containers Handled in Open Seas Guidelines MSC/Circ 860</td>
</tr>
<tr>
<td>Carriage of Dangerous Goods and Use of Transportable Pressure Equipment Regulations [SI 2007/1573]</td>
</tr>
<tr>
<td>Code of Practice for Inspection and Repair of Offshore Containers BS 7072:1989</td>
</tr>
<tr>
<td>Code of Practice for the Safe Use of Wire Rope Slings BS 6210:1983</td>
</tr>
<tr>
<td>Dangerous Goods in Cargo Transport Units HSG 78</td>
</tr>
<tr>
<td>Department of Transport Code of Practice Safety of Loads on Vehicles</td>
</tr>
<tr>
<td>Environmental Protection (Duty of Care) Regulations [SI 1991/2839]</td>
</tr>
<tr>
<td>Hazardous Waste (England & Wales) Regulations [SI 2005/894]</td>
</tr>
<tr>
<td>HCA Procedure for the Shipment of Dangerous Goods from Offshore Installations and Vessels to Onshore by Helicopter</td>
</tr>
<tr>
<td>IATA Dangerous Goods Regulations</td>
</tr>
<tr>
<td>ICAO Technical Instructions for the Carriage of Dangerous Goods by Air</td>
</tr>
<tr>
<td>International Maritime Dangerous Goods (IMDG) Code</td>
</tr>
<tr>
<td>Lifting Operations and Lifting Equipment Regulations [SI 1998/2307] (LOLER)</td>
</tr>
<tr>
<td>LOLER Approved Code of Practice (HSE Books L113)</td>
</tr>
<tr>
<td>Marine Guidance Note MGN 282 (M)</td>
</tr>
<tr>
<td>Marine Guidance Note MGN 283 (M)</td>
</tr>
<tr>
<td>Merchant Shipping (Dangerous Goods and Marine Pollutants) Regulations [SI 1997/2367]</td>
</tr>
<tr>
<td>Merchant Shipping (Prevention of Pollution by Garbage) Regulations [SI 1998/1377]</td>
</tr>
<tr>
<td>Offshore Freight Containers Design and Certification – DNV Certification Notes 2.7-1:1989</td>
</tr>
<tr>
<td>Special Waste Amended (Scotland) Regulations [SSI 2004/112]</td>
</tr>
<tr>
<td>Special Waste Amended (Scotland) Regulations [SSI 2005/22]</td>
</tr>
<tr>
<td>Specification for Wire Rope Slings and Sling Legs for General Lifting Purposes BS 1290:1983</td>
</tr>
<tr>
<td>Steel Wire Rope Slings, Safety, Slings for General Lifting Purposes BS EN 13414-1:2003</td>
</tr>
<tr>
<td>Step Change in Safety – Design and Handling of Cargo Baskets Guidance</td>
</tr>
<tr>
<td>Stowage of Goods in Freight Containers Guidelines BS 5073:1982</td>
</tr>
<tr>
<td>Temporary Portable Equipment Certificate [PE001]</td>
</tr>
<tr>
<td>Textile slings, Safety, Roundslings, made of man-made fibres, for general purpose use Guidelines BS EN 1492-1 Parts 1 and 2</td>
</tr>
<tr>
<td>Transport of Dangerous Goods and Use of Transportable Pressure Receptacles [SI 2004/568]</td>
</tr>
<tr>
<td>Transportable Gas Cylinders – Gas Cylinder Identification (excluding LPG) – Part 3 Colour Coding: BS EN 1089 – 3:2004</td>
</tr>
<tr>
<td>Waste Management Regulations [SI 1996/634]</td>
</tr>
<tr>
<td>Well Handled – Offshore manual handling solutions HSG 171</td>
</tr>
<tr>
<td>Oil & Gas UK Offshore Support Vessel Guidelines</td>
</tr>
<tr>
<td>Internet Links</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>UK Statutory Instrument Web site</td>
</tr>
<tr>
<td>British Standards Web site</td>
</tr>
<tr>
<td>www.bsonline.bsi-global.com/server/index.jsp</td>
</tr>
<tr>
<td>Maritime and Coastguard Agency Web site</td>
</tr>
<tr>
<td>www.mcqa.gov.uk</td>
</tr>
<tr>
<td>Step Change Standard Lifting and Crane Operating Procedures Group</td>
</tr>
<tr>
<td>step.steel-sci.org</td>
</tr>
<tr>
<td>Health and Safety Executive Home Page</td>
</tr>
<tr>
<td>www.hse.gov.uk/hsehome.htm</td>
</tr>
<tr>
<td>Chamber of Shipping</td>
</tr>
<tr>
<td>www.british-shipping.org</td>
</tr>
<tr>
<td>Oil & Gas UK</td>
</tr>
<tr>
<td>www.oilandgasuk.co.uk</td>
</tr>
<tr>
<td>Cross Industry Safety Alert Database SADIE</td>
</tr>
<tr>
<td>step.steel-sci.org/SADIE/main_sadie_fs.htm</td>
</tr>
<tr>
<td>Marine Safety Forum</td>
</tr>
<tr>
<td>www.marinesafetyforum.org/about.asp</td>
</tr>
</tbody>
</table>
6.0 RESPONSIBILITIES AND DUTIES

All parties involved in the supply chain have an obligation to ensure that cargo is properly packaged, prepared and secured for the duration of its journey to or from the offshore location, this includes the following:

- Vendors
- Haulage Contractors
- Logistics Service Providers
- Vessel Operators
- Aircraft Operators
- Offshore Operators

Successive parties in this chain are responsible for maintaining the integrity of the cargo.

To ensure compliance with these guidelines scheduled Safe Cargo Handling Audits may be undertaken by any of the parties listed above. A list of known, annual audits is available on the Marine Safety Forum website. This list should be consulted in order to minimise multiple audits of the same party.

6.1 Vendors

Vendors and their subcontractors are responsible for ensuring that cargo is prepared for shipment throughout its entire journey in compliance with relevant legislation and these guidelines.

Cargo Summary Tickets (see Appendices 7.1 to 7.3) must be fully completed at the start of the cargo’s journey. The Cargo Summary Tickets must be completed and signed by the person responsible, at the vendor’s premises, for packing and preparing the cargo for its journey to the offshore location. Where there are multiple truckloads, one copy is to accompany each truck with the relevant items highlighted.

Yellow Cargo Safety and Security Tags as recommended by STEP Change in Safety (see Appendix 7.4) may be used in addition to Cargo Summary Tickets as a visual indicator that cargo has been checked and is packed in accordance with the Cargo Summary Ticket.

Vendors and their subcontractors must ensure that all applicable documentation accompanies the shipment, eg Temporary Portable Equipment Certificate (TPEC), Vendor’s Certificate of Conformity (VCOC) or equivalent.

Non-conformance with these guidelines WILL result in cargo NOT being forwarded until the necessary remedial actions have been carried out in conjunction with the relevant company. See Section 11, Non Conforming Cargo.

6.2 Haulage Contractors

6.2.1 General

Haulage contractors are responsible for ensuring that drivers have the necessary competency levels for the task to be undertaken and that vehicles plus accessories are fit for the intended purpose.

They must therefore ensure that:

i. Vehicles are suitable for the intended purpose, display the appropriate hazard warning panels and carry the requisite fire fighting equipment.
ii. Drivers are provided with all other safety equipment that may be required in the event of an emergency involving the goods being transported. Such equipment may include, but is not restricted to, first aid equipment, protective clothing, etc.

iii. During loading or discharge of cargo the driver, in conjunction with the plant operator, agrees the location of the safe haven and remains there until the operation is completed.

iv. Drivers are provided, by customer/vendor in writing, with the mandatory transport information about the goods to be carried. Additionally, if the goods are classed as dangerous they must have a good understanding of the nature of the hazards and appropriate action to be taken in an emergency, and must possess a suitable Accord Dangereux Routiers (ADR) qualification.

v. Drivers must not accept any cargo manifested for offshore without the appropriate Cargo Summary Tickets.

vi. The contractor must ensure compliance with the Carriage of Dangerous Goods and Use of Transportable Pressure Equipment Regulations [SI 2007/1573], including the provision of a competent attendant where appropriate.

vii. There is a storage space in the cab for this detailed information.

viii. Drivers are trained to use the emergency equipment provided.

ix. Drivers are adequately trained and instructed regarding their duties under ADR Regulations and, if required, are in possession of a valid certificate of training relevant to the task being performed.

Further guidance can be obtained in Dangerous Goods in Cargo Transport Units HSG 78.

6.2.2 Dangerous Goods

Drivers must:

i. Ensure that information about previous loads or substances carried has been destroyed, removed or kept in a securely closed container.

ii. Keep the written information about the dangerous goods readily available throughout the journey.

iii. Ensure precautions are available against fire, explosion or any other incident throughout the journey. This includes checking the fire extinguishers, normally on a daily basis.

iv. Ensure appropriate hazard warning placards are available, accessible and legible.

v. Ensure loads are properly secured on the vehicle (Department of Transport Code of Practice Safety of Loads on Vehicles provides guidance).

vi. Leave unattended vehicles only in a designated parking area.

6.2.3 Securing and Safety of Loads

6.2.3.1 The driver is responsible for the safety and security of any load whilst it is on the vehicle and, wherever practical, should ensure that there are no loose objects on any cargo carried.

Safety and security of cargo being returned to vendors is the responsibility of the logistics service provider. Where several cargoes are carried on the same vehicle factors to be taken into account in planning the route must include:

i. Compatibility of materials carried
ii. Order of discharge

Forward planning will minimise risks associated with off-loading vehicles.

6.2.3.2 The method of securing the cargo on the vehicle will depend on the load being carried. When containers are being carried the following factors shall be taken into consideration:

i. Twist locks are the preferred means of securing the items.

ii. Where twist locks are not used, a minimum of two restraints per container must be used, ensuring the combined Safe Working Load (SWL) of the restraints exceeds the weight of the cargo.

 Local rules which have been subject to thorough risk assessment may, however, be applied to site transportation.

iii. Container door(s) should be closed and the closing mechanism secured so that it cannot inadvertently open during handling and transport.

iv. Empty Cargo Carrying Units (CCUs) specifically designed for the purpose may be stacked for road transport when compatible. Attention is drawn to the possibility that units that appear similar may not be compatible, and due care should be taken. Where CCUs are not designed to be stacked but nevertheless require road transportation in a stacked manner, a risk assessment must be performed which should include, but is not limited to:

 - the CCU is empty
 - no metal to metal contact
 - substantial dunnage is used
 - strapping is in excess of the normal requirements
 - where necessary, trailer stanchion pins are fitted

6.2.3.3 Lashing material will depend on the weight to be secured. Polyester cargo restraints will be sufficient for the majority of cargo but extremely heavy loads will have to be secured using high tensile chains and ratchet style loadbinders.

6.2.3.4 To minimise hazards to other road users, lifting sets shall always be adequately secured while cargo is being transported. Where container lifting arrangements include a fifth leg, it shall also be secured.

6.2.3.5 When transporting tubulars they should, wherever possible, be “butted up” to trailers with steel headboards. The load shall be suitably secured, not exceeding the height of the headboard.

 To ensure stability of the load, trailer pins should be fitted at the sides of the trailer and secure wedges employed where necessary. As each tubular bundle is landed the slings should be laid along the length of the bundle to prevent them being crushed by the next bundle. This will also simplify off-loading.

6.2.3.6 The weight of all items of cargo being carried must be known. Consignees should be notified in advance of any items considered as heavy lifts in order that the necessary arrangements for transporting and receiving the cargo can be made. Heavy lifts are defined in 8.4.12.

6.2.3.7 Unstable objects will require special arrangements. Securing arrangements for such items should not be removed until the lifting equipment has been attached and tensioned in preparation for removal from the vehicle.
6.3 Logistics Service Providers

Logistics service providers are responsible for the safety of personnel and cargo during quayside operations, and for the safe loading or discharge of vessels whilst in port. Where service provision includes warehousing and central packing comments as per Vendors Section 6.1.

During loading or discharge of cargo the plant operator, in conjunction with the driver, agrees the location of the safe haven and the driver remains there until the operation is completed.

Logistics service providers shall ensure that the vessel deck area occupied by cargo does not exceed utilisation factors, previously agreed with Vessel Master and charterers.

Loading should be in accordance with the installation’s specific quayside shipping instructions.

Due consideration should be given to known discharge priorities for the cargo on that voyage in order to prevent “Cherry Picking”.

6.4 Vessel Operators

The Master of a vessel is responsible for the safety of the crew and vessel at all times and has authority to decide whether operations affecting the vessel should proceed or be terminated.

6.4.1 The vessel Master is responsible for the safe and correct loading of his vessel. He should liaise with the Logistics Service Provider to ensure that the vessel is loaded correctly and in accordance with the Charterer’s specific requirements.

The Master shall ensure that the deck area occupied by cargo does not exceed agreed utilisation factors.

Due consideration should be given to known discharge priorities for the cargo on that voyage in order to avoid “Cherry Picking”.

6.4.2 In conjunction with the base operator, vessel deck crew should ensure the lifting equipment is readily available for handling at point of discharge, with particular attention to half height open top containers.

The vessel deck crew should make a final visual check to ensure the lift is safe prior to the hook being attached to the load for discharge offshore.

6.4.3 The Logistics Service Provider or offshore materials co-ordinator must provide the vessel with a copy of the loading list complete with all relevant Dangerous Goods information for each installation to be visited and also an accurate manifest. These documents must be received in sufficient time to permit proper stowage of the cargo for the route envisaged.

6.4.4 The International Maritime Dangerous Goods (IMDG) Code contains internationally agreed recommendations for the safe transport of dangerous goods by sea. Although primarily aimed at vessel operators, the Code requirements affect everyone involved in the transport chain, from the manufacturer of the dangerous goods through to the consumer.

The Maritime and Coastguard Agency (MCA) prepare rules relating to the transportation of dangerous goods on offshore support vessels within the UKCS, Marine Guidance Note (MGN) 282 (M).
6.5 Aircraft Operators

The Captain of the aircraft is responsible for the safety of the passengers and aircraft at all times and has authority to decide whether operations affecting the aircraft should proceed or be terminated.

6.5.1 The aircraft Captain is responsible for the safe and correct loading of his aircraft. He should liaise with the Helicopter Landing Officer (HLO) or onshore equivalent to ensure that the aircraft is loaded correctly.

6.5.2 The HLO or onshore equivalent must provide the Captain with a copy of the manifest complete with all relevant Dangerous Goods information. These documents must be received in sufficient time to permit proper planning of the flight.

6.5.3 The International Civil Air Transport Association (IATA) Dangerous Goods Regulations contain internationally agreed recommendations for the safe transport of dangerous goods by air. These Regulations affect everyone involved in the transportation of Dangerous Goods by air.

6.5.4 The Captain of an aircraft must be supplied with information concerning any Dangerous Goods placed aboard his aircraft. This is a “Notice to Captain” or “NOTOC”, and this function is carried out by either the operator or an agent.

Note: Offshore a person providing the information is acting as the helicopter operator’s agent and the captain will need to see and keep a copy of the completed checklist and may require to see a copy of the qualified person’s acceptance certification.

6.6 Offshore Operators

The OIM is responsible for the safety of the Offshore Installation, all personnel on board and for the safe cargo handling operation.

Offshore Operators are responsible for ensuring that cargo is prepared for shipment throughout its entire journey in compliance with relevant legislation and these guidelines.

Cargo Inbound Pocket Checklists (see Appendix 7.2) should be fully completed at the start of the cargo’s journey. The Cargo Inbound Pocket Checklist to be completed and signed by the person, at the installation, responsible for checking the packaging and preparation of the cargo for its journey back to the vendor’s premises.

Alternatively, inbound orange, as recommended by STEP Change in Safety, or interfield green Cargo Safety and Security Tags (see Appendix 7.4) may be used as a visual indicator that cargo has been checked and is packed in accordance with the Cargo Inbound Pocket Checklist.

Non-conformance with these guidelines WILL result in cargo NOT being forwarded until the necessary remedial actions have been carried out. This may result in delays or other problems in the onward shipment of the cargo.

All non-conformances will be formally documented and written resolution required from the offending location.
7.0 DROPPED OBJECTS

Dropped objects continue to be a major health and safety issue within the industry.

A dropped object can be defined as any loose item found on cargo which is not properly restrained and therefore has the potential to fall off whilst in transit by road or sea.

Common examples of potential dropped objects are hand tools which have been used in preparation of the lift, debris, stones, and even ice.

The law of physics dictates that even the smallest nut can have a devastating effect when it falls 90 feet in the air on to a person handling cargo on the deck of a supply vessel. Similarly, if an object falls off a truck travelling at a speed of 40 miles per hour and strikes the windscreen of the vehicle behind it, it is clear that this could have disastrous results.

7.1 Checking for Dropped Objects

At every stage of the supply chain, the following checks should be taken to mitigate the risk of potential dropped objects:

i. Check all forklift pockets (transverse and longitudinal) for loose objects or debris.

ii. Check top of all lifts.

iii. Check all horizontal and vertical surfaces.

iv. Check within and around the structure of open framed lifts.

v. Check tanks to ensure all valve caps are closed and secured.

vi. Check bundles of pipe externally and internally and that protectors are properly fitted.

vii. Ensure thread protectors and endcaps are securely fastened.

viii. Ensure contents are properly secured to prevent items escaping during transit.

Any potential dropped objects that are found must be removed prior to transportation.
8.0 LIFTING AND SLINGING

8.1 Lifting Operations

All lifting operations performed and the lifting equipment employed must satisfy the requirements of the Lifting Operations and Lifting Equipment Regulations [SI 1998/2307] (LOLER).

Specific guidance on complying with these Regulations is given in the LOLER Approved Code of Practice (HSE Books L113).

The duty holder for the offshore installation will have, in their safety management system, documented procedures which will ensure that the requirements of the LOLER Regulations are met. Reference must be made to such documentation for any lifting operations undertaken on an installation, lifting equipment going to an installation and items which have to be lifted onto an installation.

The LOLER Regulations apply both offshore and onshore and for onshore operations reference must be made to the 'employers' procedures for complying with LOLER.

Offshore specific legislation places duties upon the 'duty holder' but as LOLER is not industry specific, the LOLER Regulations place the duty upon 'the employer' or 'a self employed person' or 'a person (carrying out a trade or business) who has control of the lifting equipment', that is control in the way it is used, or of the persons managing or supervising the use of the lifting equipment.

The duty holder for an offshore installation is an employer and can therefore have duties under LOLER.

8.2 The Organisation of Lifting Operations

A key change introduced by the LOLER Regulations is associated with the organisation of lifting operations. Every lifting operation involving lifting equipment must be properly planned by a competent person, appropriately supervised and carried out in a safe manner.

8.2.1 Planning the Lifting Operation

The degree of planning will depend upon the type of the lifting operation to be undertaken. Reference must be made to the duty holders documented procedures for LOLER compliance. An approach, which is frequently adopted, is to classify the lifting operation as either routine or non-routine.

Routine lifting operations are those that are frequently undertaken and will generally include all normal cargo operations. Documented procedures will have been developed for each of these routine lifts based upon a risk assessment and a lifting plan. Each time the operation is to be performed reference will be made to the procedure and all personnel involved in the lifting operation prior to performing the task will discuss this at the toolbox talk. Procedures must be kept under review to ensure that they remain valid.

In the case of a non-routine lifting operation this will need to be planned by a competent person, be subjected to a risk assessment and the method be detailed in a written lifting plan. The duty holder's LOLER compliance document will specify the competent person(s) who perform this function.

Further guidance on lifting operations is shown in a typical Lifting Operations Flowchart, see Appendix 8.
8.2.2 Supervision of the Lifting Operation

The degree of supervision is dependent upon the type of lifting operation to be undertaken and is therefore proportionate to the risk.

For routine operations, dedicated supervision of the operation may not be required but a competent person must be in control of the operation. This competent person will co-ordinate and control all aspects of the lifting operation, for example this person could be the banksman. In addition someone will also need to be in control of the toolbox talk, to ensure all the personnel are aware of the task, the documented procedures to be followed and their responsibilities. The person responsible for conducting the toolbox talk will again be documented in the duty holder’s LOLER compliance document.

Non-routine operations will always require supervision and this will probably be undertaken by the competent person who has undertaken the risk assessment and produced the lifting plan.

8.2.3 Competence and Training

A lifting operation can only be carried out in a safe manner if it is undertaken by competent personnel.

Reference must be made to the duty holder’s LOLER compliance document which will detail the personnel required for particular lifting operations, the training requirements to ensure initial competence and subsequent training to ensure competence is maintained.

8.2.4 Classification of Lifting Operations

The classification of the lifting operation to be performed is an essential part of the planning activities. How this is undertaken will be documented in the duty holder’s LOLER compliance document, but all the planned lifting operations will need to be classified by a competent person. It is important that this person continually reviews all operations, as there will be factors that may change the operation from being a routine into a non-routine activity.

This person will probably be the same as the one who produces the lifting plans and will identify, for example, certain types of loads which have an unusual lifting geometry, or be inherently unstable, or have other unusual characteristics.

Such lifts may include:

i. Loads with the centre of gravity above the lifting points.

ii. Loads with an offset centre of gravity.

iii. Loads with a narrow or small base.

iv. Extremely long loads that tend to rotate.

Refer to Appendix 3 for further Special Cargo instructions and Appendix 10 for transport of Abnormal or Wide Loads.
8.3 Undertaking the Lifting Operation

Prior to carrying out any lifting operation certain precautions shall be observed.

They are applicable to any lifting operation and include holding a toolbox talk at which the details of the task are discussed.

This will include for routine lifts the documented procedures and in the case of non-routine lifts the risk assessment and lifting plan. Specific responsibilities will be allocated to nominated persons at the toolbox talk, including the identification of the competent person who will co-ordinate and control all aspects of the lifting operation.

The nominated person(s) will:

i. Ensure at all times that the load does not pass over personnel.

ii. Ensure that a clear and effective communication system is employed and understood by all personnel involved with the lifting operation.

iii. Ensure there is adequate lighting in the pick-up and lay-down areas and effective and unobstructed access ways and escape routes exist.

iv. Ensure the lifting equipment is certified for current use.

v. Ensure any restrictions to the lift are removed, eg hold-down bolts, sea fastenings.

vi. Confirm that the appropriate rigging for the lift is correctly installed and the lifting sets are not twisted or snagged.

vii. Ensure shackle bolts are tight and adequately secured.

viii. Ensure pick-up and lay-down areas are within the crane radius for the load being lifted.

ix. Confirm the weight of any particular load or bundle.

x. Ensure the hook is positioned above the load's centre of gravity.

xi. Ensure only one CCU is lifted at any one time.

xii. Ensure slings of equal length are used when handling tubulars.

xiii. Ensure the load lifts horizontally.

xiv. Ensure that the operation is controlled from a position with an unobstructed view. If at any stage the view becomes obstructed, the job should be stopped while the competent person re-positions.

Should any doubt exist concerning the stability or security of any load the competent person for planning lifting operations must be consulted.

Refer to Appendix 4 for details when shipping drilling tubulars.

8.4 Lifting Arrangements

8.4.1 General Precautions

Checks prior to the attachment and use of slings and shackles include:

i. Confirm that colour coding (where applicable) is current and the sling has a visible unique number and Safe Working Load (SWL) mark.

ii. Examine for wear, corrosion, abrasion and mechanical damage, which may render the sling(s) unsafe.

iii. Check that the sling set is correctly fitted, eg no twists in the legs.
iv. Confirm that the SWL capacity for the sling set at EACH side of load is adequate for the entire weight to be lifted.

v. Check that pin size and type is correct for the type of shackle.

vi. Check that the appropriate securing arrangements are installed (split pins, wire housing, etc). R clips should not be used for this purpose.

The preferred style of shackle is the bow or anchor type fitted with a safety pin, that is, bolt, nut and split pin. The bolt or pin shall be of the same material as the body of the shackle.

Ensure the correct type of shackle bolt or pin is fitted. A common problem exists where missing high-grade shackle pins are replaced with standard bolts that are not of the same material as the body and are not capable of taking the designated load.

The crane hook link (Master Link) must have a minimum dimension of 270mm x 140mm (Specification for Wire Rope Slings and Sling Legs for General Lifting Purposes, BS 1290) to minimise the risk of trapped fingers when attaching the hook to the lifting arrangements.

8.4.2 Lifting Arrangements – CCUs

CCU Lifting arrangements almost universally consist of either wire or chain sling sets made up using appropriate connection arrangements.

Each form of rigging type has advantages and disadvantages. It is important that users understand the particular features and risks associated with each.

Arrangements incorporating wire slings are preferred in the UK, Irish, Danish and Dutch waters, those which include chain are preferred in the Norwegian sector and also elsewhere.

Guidance in the use and inspection of arrangements made up using each type of sling are included in the following sub-sections.

8.4.3 Wire Slings – General Precautions

General precautions when using lifting arrangements made up using wire slings include:

i. All sling legs, which are connected directly to master links or to shackles, should have thimbles fitted to reduce the bend radius on the wire and increase their serviceable life.

ii. To avoid out-of-plane forces, the maximum number of lifting legs allowed on a single master link or ring is two. It is permissible to have a third leg on this ring, but only if it is to be used as a top lifting leg. Three and four leg lifting slings should be fitted to quadruple assemblies, ie a main lifting ring with two sub-links.

iii. CCUs should be fitted with either a four or five leg lifting assembly with master link, depending on CCU type. The fifth leg is designed to hang over the side of the unit to assist in its hook-up, eliminating the need for personnel having to climb on top of containers to attach or release the crane hook.

iv. This fifth leg is not a design requirement, but it is a preferred option and, if fitted, should "fall short" of the height of the container to facilitate connection and release of the hook. If the dimensions of the container are such that the fifth leg would present a snagging hazard at other stages of the supply chain, the fifth leg should not be fitted.
There is a recommended minimum wire rope diameter of 13mm allowed for wire rope slings. Operationally, it may be necessary to use wire rope of a smaller diameter however, wire rope of a smaller diameter is susceptible to impact damage and appropriate checks should be carried out.

8.4.4 Wire Slings – Certification, Marking and Inspection

BS EN 13414-1 is the current manufacturing standard for general purpose wire rope slings and shall be used as the basis of all lifting sets for offshore containers. BS EN 13414-1 is only the general manufacturing standard, further design requirements are given in the various standards for the design and manufacture of offshore container lifting sets, ie end terminations, minimum length of forerunner, minimum link dimensions, minimum rope dimensions, rope construction, shackle type, stamping requirements, etc.

To allow the lifting set to withstand the maximum dynamic loadings applied during offshore operations an enhancement factor is given in each offshore container standard. This enhancement factor is applied to the gross weight of the offshore container to determine the minimum working load (WLL min) or safe working load required for the associated lifting set. In the previous manufacturing standard, ie BS7072, the enhancement factor was recognised as 1.3 x gross weight, eg a 10 tonne gross container would be fitted with a 13 tonne lifting set. Although this enhancement factor is easy to apply, it does not truly reflect the relationship between the dynamic load and the containers’ gross weight. This is resolved in BS EN 12079:2006 and NDV 2.7-1:2006 by the introduction of variable enhancement factors.

To comply with LOLER all lifting sets must be thoroughly examined by a competent person when first put into service and at least every six (6) months thereafter, or in accordance with an Examination Scheme.

When carrying out thorough examination on a lifting set, the following criteria should be taken into consideration:

- **Sling markings**
 The sling markings, ie information on the sling identification and the working load limit /SWL, etc are legible.

- **Design restrictions**
 The relevant standard design restrictions, ie end terminations, minimum length of forerunner, minimum link dimensions, minimum rope diameters, rope construction, shackle type, stamping requirements, etc.

- **Damaged upper and lower terminals**
 Wear, distortion or cracking of the upper or lower terminals

 Note: Particular attention should be paid to distortion and wear of links, distortion and wear of shackles, or the closing of the thimbles, all of which are indications that the sling may have been overloaded.

- **Damaged rope terminations**
 Wear, distortion or cracked ferrules.

- **Broken wires**
 Broken wires are detrimental because of the possibility of injury to the user’s hands and the loss of strength in the rope.

- **Rope distortion**
 Kinking, crushing, bird caging, core protrusion or other damage that distorts the rope structure.
- **Rope wear**
 10% of the nominal rope diameter.

- **Corrosion**
 Pitting of the wires or loss of flexibility of the rope due to severe internal corrosion.

- **Heat damage**
 Heat damage as evidenced by discolouration of the wire, loss of lubrication or pitting of the wire caused by electric arcing.

Prior to using any lifting equipment a pre-use check must be carried out by the user or operator to comply with LORER.

The employer should ensure that their operators have received appropriate training, information and instruction to carry out these checks. A trained operator should be able to identify damage to the principal elements and accessories, distortions to shackles and other obvious faults that could affect the safe operation of the lifting set.

8.4.5 Chain Slings – General Precautions

General Precautions when using lifting arrangements made up using chain slings include:

i. All arrangements are correctly certified in accordance with the relevant legislation.

ii. Chains and components employed in the make-up of the arrangements are constructed from alloy grade 8 (or better), and have properties suitable for working in extremely cold conditions (-20 °C).

iii. All connections are compatible and fit for the purpose intended.

iv. Agreement is obtained from all the parties involved.

Note: Additional risks associated with chain slings include an increased risk of snagging and sparking potential.

8.4.6 Chain Slings – Certification, Marking and Inspection

BS EN 818-4 is the current manufacturing standard for general purpose chain slings and covers both slings assembled with mechanical joining devices, ie chain connectors and slings assembled by welding. The most common of these two assembly processes used in the UK is mechanically joined slings, although in the Norwegian sector welded slinging assemblies are commonly used instead of wire rope slings as lifting sets for offshore containers.

To comply with LOLER all lifting sets must be thoroughly examined by a competent person when first put into service and at least every six (6) months thereafter, or in accordance with an Examination Scheme.

When carrying out thorough examination on a lifting set, the following criteria should be taken into consideration:

- **Sling markings**
 The sling markings, ie information on the sling identification and the working load limit /SWL, etc are legible.

- **Design restrictions**
 The relevant standard design restrictions, ie end terminations, minimum length of forerunner, minimum link dimensions, shackle type, stamping requirements, etc.
• **Damage to chain links**
 Wear, distortion or cracking of the chain links.

 Note: Particular attention should be paid to distortion and wear of chain links which are indications that the sling may have been overloaded.

• **Damage to upper and lower terminals**
 Wear, distortion or cracking of the upper and lower terminals.

 Note: Particular attention should be paid to distortion and wear of links, distortion and wear of shackles, distortion and wear of hooks, all of which are indications that the sling may have been overloaded.

• **Incorrectly assembly**
 All mechanical jointing devices shall be correctly assembled as per the manufacturer’s instructions.

• **Corrosion**
 Pitting of the chain links and upper and lower terminals.

• **Heat damage**
 Heat damage as evidenced by discolouration of the chain.

All chains assembled in accordance with BS EN 818-4 must be manufactured using grade 8 short link. To identify the grade, a link shall be marked ‘8’ every twentieth link or every metre whichever is the lesser distance.

Prior to using any lifting equipment a pre-use check must be carried out by the user or operator to comply with LORER.

The employer should ensure that their operators have received appropriate training, information and instruction to carry out these checks. A trained operator should be able to identify damage to the principal elements and accessories, distortions to shackles and other obvious faults that could affect the safe use of the lifting set.

8.4.7 Webbing Slings – General Precautions

Certified webbing (or fibre) slings, with adequate site control, are suitable for particular lifting operations at the worksite or on board the installation.

Such slings should not normally be used as the primary means of lifting from or to vessels unless the operation has been the subject of a thorough risk assessment.

8.4.8 Webbing Slings – Certification, Marking and Inspection

To comply with the current CEN manufacturing standard EN 1492-1 and 2 Textile Slings – Safety, all flat and round webbing slings must be manufactures using one of three materials: polyester, polyamides (nylon) or polypropylene.

As each of these materials have different properties, care should be taken to ensure that slings manufactured from each of these materials fulfil the requirements of the intended function, please see properties of each material below:

Polyester (PES)

- Resistant to mineral acids but is damaged by alkalis
- Use and storage range -40 °C to 100 °C
- Unaffected when wet
- Stretches 5% under load
Polyamides (Nylon) (PA)
- Virtually immune to the effect of alkalis however, they are attacked by mineral acids
- Use and storage range -40 °C to 100 °C
- Loses around 10% of its strength when wet
- Stretches 40% under load

Polypropylene (PP)
- Little effected by acids or alkalis
- Use and storage range -40 °C to 80 °C
- Unaffected when wet
- Stretching varies

To easily identify each of these materials, a colour code system is used. This will usually be in the form of a sewn on label: Blue for polyester, Green for polyamides (nylon) and Brown for polypropylene.

A colour code is also used to identify the working load limit (WLL) of each sling. The way a sling is used, ie mode of use, shall also be taken into account when assessing the WLL of a sling. Please see colour code/mode of use chart below.

<table>
<thead>
<tr>
<th>Safety Colour Code</th>
<th>Straight Lift</th>
<th>Choke Lift</th>
<th>Basket Lift</th>
<th>2 Leg Sling</th>
<th>3/4 Leg Sling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lift Angle</td>
<td>Vertical</td>
<td>Vertical</td>
<td>Parallel</td>
<td>0-45</td>
<td>45-60</td>
</tr>
<tr>
<td>Factor</td>
<td>1</td>
<td>0.8</td>
<td>2</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>Violet</td>
<td>1</td>
<td>0.8</td>
<td>2</td>
<td>1.4</td>
<td>1</td>
</tr>
<tr>
<td>Green</td>
<td>2</td>
<td>1.6</td>
<td>4</td>
<td>2.8</td>
<td>2</td>
</tr>
<tr>
<td>Yellow</td>
<td>3</td>
<td>2.4</td>
<td>6</td>
<td>4.2</td>
<td>3</td>
</tr>
<tr>
<td>Grey</td>
<td>4</td>
<td>3.2</td>
<td>8</td>
<td>5.6</td>
<td>4</td>
</tr>
<tr>
<td>Red</td>
<td>5</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Brown</td>
<td>6</td>
<td>4.8</td>
<td>12</td>
<td>8.4</td>
<td>6</td>
</tr>
<tr>
<td>Blue</td>
<td>8</td>
<td>6.4</td>
<td>16</td>
<td>11.2</td>
<td>8</td>
</tr>
<tr>
<td>Orange</td>
<td>10</td>
<td>8</td>
<td>20</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

Prior to using any lifting equipment, a pre-use check must be carried out by the user or operator to comply with LOLER.

The employer should ensure that their operators have received appropriate training, information and instruction to carry out these checks. A trained operator should be able to identify damage and other obvious faults that could affect the safe use of the sling set.

8.4.9 Fabricated Items

Where fabricated items include integrated lifting points written documentation that they are ‘fit for the purpose’ shall be forwarded to the handling agent.

Lifting arrangements must be designed to comply with BS 1290 as well as Code of Practice for Inspection and Repair of Offshore Containers (BS 7072).

Lifting arrangements for fabricated items should be consolidated into a single master point.

Multiple terminations are not normally acceptable.
8.4.10 Transit Slings
Transit slings are used for the transportation of equipment to and from offshore installations and onshore sites and should only be used for this purpose.
Transit slings should not be used for general lifting purposes, as they are not part of the installation’s lifting equipment.
A formal system is required to manage the use of transit slings to ensure that they comply with all relevant legislation and can be identified.

8.4.11 Plastic Coated Transit Slings
Plastic coated transit slings may be used for transporting easily damaged items, subject to thorough risk assessment which must take into account seasonal factors, such as low temperature cracking of plastic sheathing.
These slings must be subject to the same controls as normal transit slings.

8.4.12 Heavy Load Identification
If the load is seven (7) tonnes or over it should be considered as “HEAVY” and identified as such by means of a pennant or flag attached to the fifth leg or close to the master link assembly of the lifting set prior to shipping.
Although seven tonnes is a normally accepted standard, certain locations may have a higher or lower heavy lift threshold. Location specific information should be provided by the offshore operator.
Particular care must be taken when shipping to or from small, normally unattended installations.

8.4.13 Use of Tag Lines
The use of tag lines should be avoided as they could involve personnel standing in unsafe positions. If it is considered necessary tag lines shall only be used after a risk assessment has been undertaken, see Appendix 11.

8.4.14 Thorough Examination and Inspection of Lifting Equipment
A “thorough examination” is a visual inspection carried out by a competent person.
To comply with LOLER all lifting equipment shall be thoroughly examined by a competent person when first put into service and periodically during its lifetime, but at least every six months thereafter, or in accordance with an examination scheme.
In the case of equipment or accessories for lifting persons (all forms of “man riding” equipment) this examination should take place at least every six months or in accordance with a written scheme of examination.
The user or owner has a choice whether to thoroughly examine the equipment according to the intervals specified in LOLER or, alternatively, have a written scheme of examination drawn up and thoroughly examine the equipment in accordance with such scheme.

8.4.15 Written Scheme of Examination
A written scheme of examination may be drawn up by the user or owner provided they have the necessary competence.
The scheme should specify the intervals at which the lifting equipment should be thoroughly examined. Any examination scheme for lifting equipment should take into account the lifting equipment’s condition, the environment in which it is used, the number of operations and the nature of load the equipment will be subject to.
If a written scheme of examination is to be used, it is essential that the user or owner is able to produce the examination scheme if requested by an inspector from the relevant enforcing authority.

If the user or owner is unable to produce the examination scheme, the enforcing authority will assume that the specified examination period laid down in LOLER has been followed.

8.4.16 Inspection of Lifting Equipment Before Use

In each and every case where lifting equipment is to be employed before use it must be checked by the person in direct charge of the operation for defects in arrangements and/or physical damage to comply with LOLER.

The employer must ensure that their personnel have received appropriate training and instruction to carry out these checks.

A trained operator must be able to identify damage to the elements of the equipment and accessories, distortions and other obvious faults that could affect the safe operation and use of the equipment.

8.4.17 Colour Coding of Lifting Equipment

Arrangements based on colour codes attached to lifting equipment are frequently used to indicate the test status of lifting equipment in use on a particular site.

Where such arrangements are in use the current colour, indicating that the test certificates of any lifting equipment bearing this colour is “in date”, should be conspicuously displayed immediately adjacent to the work site.
9.0 CCU CARGO GUIDANCE

9.1 Introduction

Cargo guidance in this section outlines the principal points to be considered when preparing cargo for shipment to and from offshore locations.

A Cargo Summary Ticket, showing the minimum checks to be performed, (see Appendix 7.1) must be fully completed before the start of the cargo’s outbound journey, and accompany the cargo to its ultimate destination.

The Cargo Inbound Pocket Checklist and/or the Cargo Safety and Security Tag (see Appendices 7.2 and 7.3) should be fully completed before the start of the cargo’s inbound journey, and accompany the cargo to its ultimate destination.

The above documents must be completed and signed by the following:

i. For outbound journeys the person(s), at the vendor’s premises, responsible for preparing, packing and checking the CCU for its journey to the offshore location.

ii. For inbound journeys the person(s), at the installation, responsible for preparing, packing and checking the cargo for its journey back to the vendor’s premises.

Section 9.13 illustrates some types of CCUs that are in common use for transporting material to and from offshore installations.

Refer to Appendix 1 for the particular points to be considered when preparing cargo for shipment to and from offshore installations in tanks.

9.2 General

All companies providing a service for owners and operators of installations should ensure that:

i. All CCUs and lifting gear used to ship materials to or from offshore installations are correctly chosen for the purpose, in terms of type, size and load carrying capacity. They should satisfy themselves that a testing and inspection procedure is in place.

ii. All certification is fully in date at the time of use, and has sufficient test period remaining so as to prevent the CCU certification expiring when offshore – normally one month minimum.

It should be noted that some operators may require a longer minimum period of test validity as a condition of a unit being shipped offshore.

iii. Only CCUs specifically designed for the purpose should be stacked.

Where any possibility exists that units be double stacked, the procedures and arrangements to be employed must be fully risk assessed. Explicit permission is required from the OIM before the commencement of relevant operations.

Precautions to be observed when stacking long cargo baskets are specifically addressed in ‘Design and Handling of Cargo Baskets, Precautions’ published by the Step Change initiative, details of which are include in the list of References.
iv. Containers with corner castings, which are employed as a means of lifting the container, should not be presented for shipment. Containers that are lifted using corner castings are, in reality, ISO containers, and are designed for use in general marine transport, loading and unloading in ports and inland waterways, by means of a four-point vertical lifting device ie spreader beam.

Reference should be made to MSC/Circ 860 dated 22 May 1998 ‘Approval of Offshore Containers Handled in Open Seas Guidelines MSC/Circ 860’, which can be found in the IMDG Code Supplement.

9.3 Cargo Handling and Shipping Equipment

9.3.1 All CCUs should be provided complete with lifting sets in place.

9.3.2 CCU doors must be properly secured, with both top and bottom locking cams fully engaged, and door handle locking mechanism secured with a seal.

Typical latch securing arrangements include custom seals, steel bands or tie-wraps with minimum width of 10mm (3/8”).

When the CCU contains Dangerous Goods, to enable ready access in the event of an emergency, padlocks should not be used. It is, however, recognised that certain classes of Dangerous Goods, ie explosives and radioactive material, are required to be secured to prevent interference.

9.3.3 The use of boat-shaped skips has been identified as a factor in accidents, and their use should be actively discouraged. These skips are easily snagged, are difficult to secure and, when the vessel cargo deck is awash, have a tendency to float when empty. A number of operators have removed them from service.

9.3.4 Where open cargo baskets are provided for the return of general waste, they should be provided with safety nets to retain the contents.

9.3.5 Wherever possible scaffolding tubes and boards should be pre-slung and transported in an open top CCU to facilitate the safe removal offshore. Other associated equipment, eg clips, should be sacked or containerised.

Alternative arrangements for shipping these goods should be subject to risk assessment.

9.4 General Checks for Open and Closed CCUs

The following checks, some of which are illustrated in 9.7 and 9.8, must be carried out:

i. Check condition of CCU, including operation of doors, door hinges, seals and locks, tie-down points and ensure that generally there are no signs of excessive corrosion or deformation.

ii. Check all certification is fully in date at the time of use, and has sufficient test period remaining so as to prevent the CCU certification expiring when offshore.

Containers with less than 30 days of currency of certification will not be shipped to any offshore installation, except by written agreement with the shipper.

iii. Remove old hazard placards and labels when the unit does not contain hazardous goods.

iv. With open CCUs, please ensure the drainage holes are clean and free of debris. The larger open top containers with drainage holes blocked can hold up to 18 tonnes of water.
v. Check that the units are clean and free of debris prior to loading.

vi. Use cargo restraining nets in all closed CCUs. Ensure that nets are the correct size and type for the CCU and that the fixing points and nets are in good condition.

vii. Check CCU roof, forklift pockets and any external ledges for loose items such as tools, dunnage, stones, etc.

viii. Always check lifting sets and fixed lifting points.

ix. Check the container door(s) are closed, dogs (cams/claws) top and bottom can be fully engaged and the closing mechanism secured so that it cannot inadvertently come open during handling and transport.

9.5 General Checks for Specialist Equipment

Examples of Specialist Equipment are: compressors, ROV cable units, wireline cabins, skid mounted pumps, and other skid mounted units, this list is not exhaustive.

In addition to the checks listed in 9.4 above, the following checks, should also be considered:

i. Removable items are secured for shipment or removed and placed within a CCU.

ii. Locking mechanisms released for operation are re-secured, as per manufacturer’s instructions, for transportation.

iii. Due consideration should be given to reducing the additional snagging hazards associated with this type of equipment.

iv. The carriage of machinery containing dangerous goods (fuel) should be in accordance with the IMDG Code and MGN 282 (M). Where relevant, a copy of the Marine Competent Authority Approval (MCAA) documentation shall accompany the shipment.

9.6 Packing Cargo in CCUs

In the course of offshore operations, cargo in transit and its sea fastening arrangements are likely to be subjected to forces acting in three axis. Such forces can be the result of shock loadings during transfer operations or vessel motions in a seaway, particularly during bad weather.

Goods being transported by other means will also experience significant forces as a result of vehicle motions or rough handling during transit. Whilst being carried on moving vehicles, goods and their securing arrangements may also be subjected to exceptional loads during emergency situations.

These forces can result in violent, unexpected movements of the goods both at the time an incident occurs or when the package or CCU is subsequently opened. Goods must therefore be adequately secured against potential movement within their individual packages. In turn, where the packages are loaded into a CCU they must likewise be correctly stowed and secured.

Further guidance can be found in Dangerous Goods in Cargo Transport Units HSG 78.

Failure to recognise and comply with these requirements can result in severe injury to personnel and material damage.

9.6.1 All packaging must be suitable. It must prevent any of the contents moving or escaping under adverse weather conditions and rough handling. Examples of packing are in Appendix 5.
9.6.2 When packing goods, metal to metal contact should be avoided where possible, to minimise movement during transit. Where appropriate, a risk assessment should be carried out.

9.6.3 Management arrangements in the organisation must ensure that the people who do the work are properly trained. Training should cover:

i. Demonstrable understanding of this document.

ii. Compatibility of packaged goods.

iii. Dangerous goods awareness.

iv. Weights of packages and load distribution.

v. Securing, bracing and dunnage.

vi. The correct unit for the material being packed.

9.6.4 The duties of the packer include the following areas:

i. All packages must be suitable, properly labelled and in satisfactory condition.

ii. Packages must be stowed safely and properly secured in the CCU. Checks must be made on the weights of the packages to ensure a safe load distribution and to prevent the maximum permitted gross weight of the CCU being exceeded.

iii. Placard the CCU with the destination label.

iv. When suspended, lift must be level in both axes, <3% of length/breadth (equivalent to 6” in 20’, 18” in 50’).

v. Affix any relevant hazard placards and labels when hazardous goods are carried.

vi. Always load heavier cargo low in the container, with lighter goods on top. For ease of removal, heavier items should be loaded at the front of closed containers. Particularly heavy items should be shipped in open top units, i.e. half heights.

vii. If necessary, use packing between items in CCU.

viii. Ensure CCU contents are lashed or wedged securely, to avoid movement in transit.

ix. Use cargo restraining nets in all closed CCUs. Ensure that nets are the correct size and type for the CCU and that the fixing points and nets are in good condition.

x. Check the container door(s) are closed, dogs (cams/claws) top and bottom are fully engaged and the closing mechanism secured so that it cannot inadvertently come open during handling and transport.

xi. Ensure that no equipment is loaded above the height of an open CCU without a risk assessment. This is to prevent snagging, damage to contents and potential dropped objects. The use of a net, tarpaulin, wooden battens or roofbars is recommended to mitigate the risk of snagging.

xii. Tape must never be used to secure loose items which could constitute a potential dropped object hazard. Loose items should be containerised and protective packaging should be secured using a certified lashing product (refer to manufacturer’s instructions for correct use of lashing product).

Written information concerning loading and the potential hazards must be prepared. This must be made available to the next person handling the CCU.
9.6.5 *Selection of Lashing Equipment for Packing CCUs*

During transport, forces such as acceleration, braking, centrifugal and vertical forces act on the load. A prerequisite for safe transport is a suitable CCU with the appropriate structure and necessary load lashing devices. The task of load lashing is to secure the load against the effect of these forces to prevent slipping, tipping or falling.

Lashing arrangements must be made up using certified materials. Wooden dunnage or similar material must only be used in conjunction with such certified products.

Total certified capacity of the lashing arrangements should be greater than the weight of the items being secured. Lashings should be equally distributed across the item.

9.6.6 *Wheeled Cargo*

All wheeled cargo, irrespective of weight or dimensions, should be secured sufficiently for shipping by effectively taking the wheels out of commission, ie raised on timber. It is unlikely that conventional lashing would be sufficient for this task.

9.6.7 *Packages*

General packing provisions are as follows:

i. Polystyrene chip packing and hessian sacks should not be used due to environmental and safety reasons. The product should be packed using bubble wrap.

ii. Nylon sacks used to send heavy items by air should be packed into cardboard boxes.

iii. Items weighing more than 25kg should be labelled as “heavy” for manual handling reasons. Attention is drawn to Step Change recommendations regarding the use of coloured weight tape to identify handling risks.

iv. All sharp and protruding objects should be removed.
Check that the cargo restraining net is serviceable and that the method of securing it is in working condition.

- Check that the cargo restraining net is serviceable and that the method of securing it is in working condition.
- Check doors, hinges, seals and locks for damage.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Ensure forklift pockets (transverse and longitudinal) are clear of debris.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check forklift pockets (transverse and longitudinal) are clear of debris.
- Ensure correct hazard labels (if required) on all four sides.
- Old hazard labels to be removed.
- Ensure dogs (cams/claws) top and bottom fully engaged on both doors.
- Check unit is not overloaded.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check unit for excessive corrosion and/or deformation.
- Check doors, hinges, seals and locks for damage.
- Check top surfaces for loose equipment.
9.8 Open Container – Key Points from Checklist

- Check top surfaces for loose equipment.
- Check lifting equipment for damage and that shackles are secured correctly.
- Check the locking mechanism is secured on both door handles.
- Check unit is in test and has sufficient validity remains for proposed use.
- Check unit is not overloaded.
- Check unit for excessive corrosion and/or deformation.
- If loaded, ensure there are no potential internal snagging hazards. If so, ensure adequate protection is in place to prevent risk of snagging.
- Check doors and locks for damage.
- If stored on stony/soft surfaces there may be debris caught underneath unit.
- Ensure drainage holes are clear.
- Ensure forklift pockets (transverse and longitudinal) are clear of debris.
- Check the securing points are in good condition.
- Check the locking mechanism is secured on both door handles.
9.9 Snagging Hazards

Prior to shipping, the vendor or person responsible for packing CCUs must perform appropriate risk assessments and, if appropriate, introduce control measures to prevent snagging of lifting arrangements with contents during cargo operations.

Examples of measures to be considered include:

i. Use of the correct CCU for the job, eg consider using closed CCU as opposed to cargo baskets and half heights.

ii. Where there is a risk of lifting sets snagging the cargo, make use of suitable material to cover equipment. This could include, but is not limited to, cargo nets, tarpaulins, wood battens, roofbars, cord strapping and crating of equipment.

iii. Remove protruding parts from cargo in the CCU and secure in the appropriate manner.

During cargo planning, logistics service providers should consider the potential for CCUs to snag on vessel structures, in particular the safe havens.

9.10 CCU Standards and Inspection Requirements

9.10.1 Construction Standards

Containers used for the carriage and handling of cargo to and from offshore installations should conform to one of the following standards:

i. BS EN 12079: 2006 Parts 1, 2 and 3 Offshore containers – design, manufacture and marking, and periodic inspection, examination and testing

This standard specifies requirements for the design, manufacture and marking of offshore containers with a maximum gross mass not exceeding 25,000kg and also gives guidance with reference to lifting sets. Part 3 deals with the periodic inspection, examination and testing.

ii. DNV 2.7-1: 2006 Offshore containers

This certification note covers the requirements for offshore containers with respect to design, manufacture, testing and certification including the lifting sets. The DNV certifying authorities issued a ‘Position Paper’ in January 2007 which related to the marking and certification of sling sets with reference to DNV 2.7-1: 2006.

iii. DNV 2.7-3: 2006 Portable offshore units

This standard covers types of portable offshore units with a maximum gross mass exceeding 25,000kg but not exceeding 50,000kg.

iv. BS EN 12079: 1999 Offshore containers – design, construction, testing, inspection and marking

This standard specifies requirements for design, manufacture and marking of offshore containers with a maximum gross mass not exceeding 25,000kg. It also established a system for plating offshore containers linked to a define scheme for periodic examination and test and introduced a requirement for pre-trip inspection.

v. DNV 2.7-1: 1995 Offshore containers

This certification note covers the requirements for offshore containers with respect to design, manufacture, testing and certification including the lifting sets.
vi. DNV 2.7-1: 1989 Offshore containers

This certification note covers the requirements for offshore containers with respect to design, manufacture, testing and certification including the lifting sets.

vii. BS 7072: 1989 Inspection and repair of offshore containers

This code gives recommendations for plating, marking, examination, testing and repair of offshore containers. This standard has been withdrawn from publication but is still available to cover containers manufactured to this standard.

All offshore containers shall be periodically inspected, examined and if necessary tested in accordance with the relevant manufacturing standard. Please see table below.

<table>
<thead>
<tr>
<th>Inspection interval</th>
<th>Manufacturing standards inspection requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BS 7072 1989</td>
</tr>
<tr>
<td>On manufacture</td>
<td>T</td>
</tr>
<tr>
<td>6 months</td>
<td>V</td>
</tr>
<tr>
<td>12 months</td>
<td>VN</td>
</tr>
<tr>
<td>18 months</td>
<td>V</td>
</tr>
<tr>
<td>24 months</td>
<td>T</td>
</tr>
<tr>
<td>48 months</td>
<td>T</td>
</tr>
<tr>
<td>60 months</td>
<td>VN</td>
</tr>
<tr>
<td>After substantial repair or alteration</td>
<td>T</td>
</tr>
</tbody>
</table>

T Proof load test, non-destructive examination and visual inspection

VN Non-destructive examination (NDE) and visual inspection

V Visual examination only
9.10.2 Pre-use Inspections

Immediately before transporting a container offshore and before its return trip a person that the user has deemed competent shall inspect the container.

The appointed person shall check the validity of the certification by reference to the inspection plate and verify that the container, including its lifting set, is free from obvious defects rendering it unfit for use. It is recommended that this inspection should consist of, as a minimum, the following checks.

<table>
<thead>
<tr>
<th>Pre-trip inspection check list</th>
<th>Fail</th>
<th>Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Check inspection plate to ensure that the inspection date is current (see 9.11.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Check safety markings to ensure they meet the standard requirement (see 9.11.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Check lifting set for obvious signs of damage (see 8.4.16)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Check lifting set to establish that all parts are present, correct, properly connected and secure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Check container roof, forklift pockets, frames, etc for loose items</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f. Check that safety nets are in position where necessary and that tie down points are in place and are fit for purpose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g. Check container doors are closed, secured and locking mechanism undamaged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h. Check drainage holes are clear on open containers</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.11 Marking

9.11.1 Safety Marking

All offshore containers must have a reasonable amount of safety markings. Although the requirements for these markings can differ slightly from standard to standard, the basics remain the same. To clearly delineate the perimeter of a container, particularly in poor lights, the tops of closed containers and the top rails of open framed containers should be marked as follows:

- Closed containers shall be marked with a band of solid contrasting colour not less that 100mm wide round the roof perimeter. If the roof of the container is recessed below the top perimeter rail, at least the top surface of the top rail shall be marked.

- Open and frame containers shall be marked on the top surface of the top rails, with either hatching in a contrasting colour or a solid light colour.

- Where a container is fitted with fork pockets designed for handling the container only when empty (eg on some tanks and long baskets) then the words “Empty lift only” shall be clearly displayed near each set of fork pockets in characters not less than 50mm high.

9.11.2 Identification Marking

All offshore containers shall be marked with a unique identification number issued by either the fabricator or the owner. It is a requirement of manufacturing standards that the identification number is to be marked on the container as follows:

- The identification number shall be prominently and indelibly displayed on all sides of the container (as viewed from ground level) in characters of contrasting colour, not less than 75mm high.
• If a container has a roof, the container number shall be displayed on the roof, in characters 300mm high or more. The markings should be carried out in such a way as to avoid incorrect interpretation, eg by underlining. Where applicable, the lower edge of the marking shall be positioned near the front of the container in which the door is located.

• Each container shall have the fabricator’s serial number welded on the frame in characters at least 50mm high. This is not a requirement of BS 7072:1989.

9.11.3 Information Marking

Each container shall be clearly marked with the container maximum gross weight (kg), tare weight (kg) and payload (kg). This information shall be displayed in characters of a contrasting colour no less than 50mm high. In addition if a container is carrying hazardous material the container must be marked with the relevant dangerous goods placarding.

On each container, a matt black square of sufficient size should be provided for information markings such as destination, cargo hazards, etc.

9.11.4 Data and Inspection Plate Marking

Each container shall be fitted with data and inspection plates (generally these plates are merged into one). These plates shall be made of corrosion resistant material securely attached externally in a manner designed to avoid unauthorised or accidental removal. Aluminium rivets have been found to be unsuitable as a securing method in the offshore environment and should not be used. The information required on the data plates differs from standard to standard. See examples of data plates below:

Data Plate in accordance with BS 7072

Data plate in accordance with BS EN 12079
On the satisfactory completion of an inspection of the container the inspection plate shall be permanently marked. This marking shall consist of the date of inspection together with:

Suffix T indicating proof load test, non destructive examination and visual inspection
Suffix VN indicating non destructive examination and visual inspection
Suffix V indicating visual examination only

9.11.5 Inspection Reports

When, in the opinion of the inspector, a container and its lifting set is suitable for service, a certificate to that effect will be issued. These certificates should accompany the container and be available for viewing as and when required.

9.12 Expiry of Test Certificate(s) whilst Unit(s) Offshore

Owners and users of CCUs and similar equipment should ensure that precautions are taken to prevent the validity of test certification expiring whilst in use.

As discussed elsewhere in these guidelines, one such precaution may be to ensure that the test certificates relating to all CCUs have a minimum period of validity prior to them being shipped offshore.

Alternatively, where it is known that equipment may be retained on the installation for an extended period, it may be necessary to arrange for an offshore re-certification programme by a competent person mobilised for this purpose. Typically, such equipment will include temporary control cabins, generators, wireline units, etc.

However circumstances do occur when, for a variety of reasons, certification relating to units or equipment may be allowed to lapse.

In such circumstances, and in the event of any subsequent requirement to be returned onshore as “controlled lifts”, it is recommended that the following practices, which are dependent on the issue date of the most recent certificate be adopted.

It should be noted that in ALL circumstances where the practices recommended in this Section are adopted, the relevant units must be returned or transported onshore in an EMPTY condition, ie they must contain NOTHING except free air at ambient pressure.

9.12.1 Test Certificate(s) Less than 18 Months Old

Relates to equipment where the test certificate has expired less than one year ago.

1. The unit or equipment, together with all lifting appurtenances, to be fully inspected by competent person on installation in direct charge of lifting operations using guidelines relating to “thorough examinations” as described in Section 8.4.13.

2. All damaged or defective equipment to be replaced as required.

3. Seafastenings, if installed, to be removed.

4. Letter(s) to be prepared, to be signed by competent person referred to above, confirming inspection and suitability of unit(s) or equipment and appurtenances to be lifted as required in the course of one transit from the offshore installation to eventual onshore destination. Letter(s) to accompany the lift(s) to the destination.
5. Prior to any subsequent use of the unit(s) or equipment and appurtenances after return, a thorough examination in a controlled environment by a competent person having access to all necessary testing facilities and in accordance with the requirements of any written scheme of examination, must be undertaken.

Following such examination all certification must be re-issued and plates re-marked as required.

9.12.2 Test Certificate(s) More than 18 and Less than 66 Months Old

Relates to equipment where the test certificate has expired more than one year but less than five years ago.

1. The unit or equipment, together with all lifting appurtenances, to be fully inspected by competent person mobilised to installation for this purpose using guidelines relating to “thorough examinations” as described in Section 8.4.13.

2. Following inspection this competent person will make any recommendations seen fit to facilitate return of the unit(s) onshore which may include:
 a. All damaged or defective equipment to be replaced as required.
 b. Seafastenings, if installed, to be removed.
 c. Letter(s) to be prepared, to be signed by competent person referred to above, confirming inspection and suitability of unit(s) or equipment and appurtenances to be lifted as required in the course of one transit from the offshore installation to eventual onshore destination. Letter(s) to accompany the lift(s) to the destination.

3. Prior to any subsequent use of the unit(s) or equipment and appurtenances after return, a thorough examination in a controlled environment by a competent person having access to all necessary testing facilities and in accordance with the requirements of any written scheme of examination, must be undertaken.

Following such examination all certification must be re-issued and plates re-marked as required.

9.12.3 Test Certificate(s) More than 66 and Less than 126 Months Old

Relates to equipment where the test certificate has expired more than five years but less than ten years ago.

1. The unit or equipment, together with all lifting appurtenances, to be fully inspected by competent person mobilised to installation for this purpose using guidelines relating to “thorough examinations” as described in Section 8.4.13.

2. Following inspection this competent person will make any recommendations seen fit to facilitate return of the unit(s) onshore which may include:
 a. All damaged or defective equipment to be replaced as required.
 b. Seafastenings, if installed, to be removed.
 c. Letter(s) to be prepared, to be signed by competent person referred to above, confirming inspection and suitability of unit(s) or equipment and appurtenances for one lift only into transit container provided specifically for the purpose of returning the unit(s) or equipment onshore. Letter(s) to accompany the lift(s) to the destination.
It is unlikely that any unit(s) or equipment returned onshore in this manner will be suitable for further offshore use.

However should particular circumstances require that the unit(s) or equipment and appurtenances are re-used, a thorough examination, in a controlled environment by a competent person having access to all necessary testing facilities and in accordance with the requirements of any written scheme of examination, must be undertaken.

Following examination all certification must be re-issued and plates re-marked as required.

9.12.4 Test Certificate(s) More than 126 Months Old

Relates to equipment where the test certificate has expired more than ten years ago.

1. The unit or equipment, together with all lifting appurtenances, to be fully inspected by competent person mobilised to installation for this purpose using guidelines relating to “thorough examinations” as described in Section 8.4.13.

2. Following inspection this competent person will make any recommendations seen fit to facilitate disposal of the unit onshore which may include:
 a. The unit(s) or equipment should be scrapped on site, parts being loaded into transit container(s) provided for the purpose of returning the scrap onshore.
 In such circumstances the provisions for the disposal of waste must be complied with, see Section 15.
 Alternatively, and only likely in exceptional circumstances, recommendations may include:

 b. All damaged or defective equipment to be replaced as required.

 c. Seafastenings, if installed, to be removed.

 d. Letter(s) to be prepared, to be signed by competent person referred to above, confirming inspection and suitability of unit(s) or equipment and appurtenances for one lift only into transit container provided specifically for the purpose of returning the unit(s) or equipment onshore. Letter(s) to accompany the lift(s) to the destination.

Any unit(s) or equipment returned onshore in this manner should not be re-used offshore.

9.12.15 Summary of Recommendations Relating to Out of Test Equipment

1. In the event that the certification relating to the lifting arrangements installed on a CCU or other lifting equipment on an offshore installation has expired within the past year, the items may be transported onshore and onward to a final destination as “controlled lifts” for recertification following inspection on the installation by the competent person in direct charge of lifting operations, using the guidelines for inspections included in this document and rectification of any defects found.

A letter confirming the inspection must accompany the item to its final destination.
2. In the event that the certification relating to the lifting arrangements installed on a CCU or other lifting equipment to an offshore installation has expired more than one year ago, a suitably qualified competent person must be mobilised to inspect the item(s).

Recommendations made by this competent person as conditions of transporting the item(s) onshore and onward to any final destination must be complied with.

A letter confirming compliance with these recommendations must accompany the item(s) to its final destination.

9.13 Types of CCUs

1. Container - Standard Closed
2. Chemical Transit Tank
3. Chemical Transit Tank - Plastic
4. Aviation Tank
5. Compactor Unit
6. Compactor Bag (Bagging Compactor)
7. Full size 20’ Container
8. Gas Cylinder Rack or Carrier
9. Ten Foot Half Height
10. Half Height Container with Doors
11. Swarf Skip
12. Drill Cuttings Skip
13. Long Basket or Tool Carrier
14. Waste Skip or Dual Purpose CCU
15. Waste Skip - boat style
<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Container - Standard Closed</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Chemical Transit Tank</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Chemical Transit Tank - Plastic</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Description</td>
<td>Illustration</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>4.</td>
<td>Aviation Tank</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Compactor Unit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ensure electrical and air supplies are disconnected.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Compactor Bag (Bagging Compactor)</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Description</td>
<td>Illustration</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>7.</td>
<td>Full size 20’ Container</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Gas Cylinder Rack or Carrier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ensure positive security of cylinders in rack by strapping in place.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NB small cylinders may require additional packing and/or a special container.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottles shipped in racks without valve protection plates must be capped.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Ten Foot Half Height</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Description</td>
<td>Illustration</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>10.</td>
<td>Half Height Container with doors</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Swarf Skip</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>Drill Cuttings Skip</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Description</td>
<td>Illustration</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>13</td>
<td>Long Basket or Tool Carrier</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Waste Skip or Dual Purpose CCU</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Waste Skip – boat style</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The use of boat shaped skips has been identified as a factor in accidents and their use should be strongly discouraged.</td>
<td></td>
</tr>
</tbody>
</table>
10.0 CARRIAGE OF GOODS BY AIR

The primary route for the carriage of goods to and from offshore is by sea. By exception, due to operational circumstances, it may be necessary to transfer goods by air. However, due to the limitations on payload and space, prior authorisation for freight must be obtained.

- Approval – permission granted by requesting company nominated person
- Notification – details of approved freight submitted to aircraft operator
- Acceptance – agreement received from aircraft operator to load freight

The information required to be provided by the shipper to the aircraft operator includes the following:

i. Delivery time and date to shipper
ii. Destination
iii. Check-in Time
iv. Flight Departure Time
v. Consignee
vi. Priority rating
vii. Supplier
viii. Description of goods
ix. Dimensions and actual weight of each package

Goods which have not been pre-notified should not be loaded unless the Captain’s permission has been obtained. Pre-notification is required to enable the Captain to complete flight planning and to ensure the appropriate personnel are available to handle the goods on departure/arrival. Last Minute Changes (LMCs) may be accepted at the Captain’s discretion.

10.1 Freight Classifications

Some offshore operators have specific airfreight priority ratings, for example:

"Vital" this will take priority over all other freight and, if necessary, passengers.

"Priority" this will be dispatched on the first available flight, payload and space permitting.

Shippers should check with the relevant operating company's procedures.

10.2 General Guidance and Freight Packaging

i. In line with the helicopter operator procedures and Department of Transport (DfT) guidelines, all freight being shipped offshore via helicopter requires to be classified as 'known cargo' and must be accompanied by a correctly completed Cargo Security Certificate (CSC). Freight can only be classified as 'known' after it has undergone either x-ray screening by x-ray trained personnel or hand-search procedures by DfT level 1 or 2 trained personnel and is securely segregated, stored and transported in line with DfT regulations. The CSC declares the method of security screening that has been applied to the freight and needs to be completed by the person carrying out the security search. Cargo which is not accompanied by a valid CSC will be rejected by the helicopter operators.

ii. All items must be “clearly, legibly and accurately” labelled not only with its contents but also with its weight.
iii. Labelling should be durable and should remain in place for the duration of transit.

iv. Unless specified otherwise by the Aircraft Operator, approved airfreight must be delivered to the appropriate freight shed (heliport/airport) at least one hour prior to the scheduled departure time.

v. Dangerous Goods must be declared in accordance with the requirements stipulated in Section 14 Carriage of Dangerous Goods by Air.

vi. Hold restrictions are enforced where freight is carried in the baggage compartment hold on all scheduled passenger flights to offshore installations.

vii. The combined weight of the goods, ie baggage and freight must never exceed the maximum floor loading of the aircraft.

viii. The maximum weight per item for personal baggage when travelling via helicopter is 11kg (25lb).

ix. The weight limit for freight items carried in the hold should not normally exceed 25kg (55lb) per item due to manual handling considerations, but certain offshore locations may impose a lower limit. The carriage of heavier freight items in the hold shall be subject to a Manual Handling Assessment prior to loading and unloading.

x. Goods required to be loaded in the cabin, whether as a result of weight restriction or size, are subject to additional constraints such as, floor-loading, Centre of Gravity (CoG) limitations, access dimensions, etc, which would be subject to further assessment prior to loading and unloading. The decision to accept the goods should recognise any restrictions that may apply at the destination.

Some operators may restrict simultaneous carriage of passengers and cabin freight on the same aircraft.

xi. Mechanical handling aids should be considered to reduce handling risks. Further guidance is available in Well Handled – Offshore Manual Handling Solutions HSG 171.

xii. When being transported by air, heavy items (11kg/25lb and over):
 - must be adequately and appropriately packed
 - must be secure within its package with its weight distributed evenly
 - cannot move or leak
 - have appropriate means for lifting or unloading
 - must be clearly labelled “HEAVY”

xiii. Polystyrene chips MUST NOT be used as a packing material as these can clog helicopter and installation’s engine intakes. Where found they shall be held until the originator can re-pack using appropriate material, eg bubble wrap, or returned for re-packing.

xiv. Lightweight items that could be blown off the helideck when removed from the aircraft should be shipped in transit bags.

xv. Hessian sacks are not suitable packaging for air freight and must not be used.

Failure to comply with any of the above will result in rejection of goods (see Appendix 7.9 Cargo Rejection Note – Air) with potential impact on offshore operations.
11.0 NON CONFORMING CARGO

11.1 Inspection Procedures

The purpose of this section is to facilitate a common analysis of cargo, CCU and lifting set faults in order to identify problem areas and minimise risk to industry.

All faults observed on cargo received will be categorised and coded as per Appendix 8 Non Conformance Code Checklist.

Companies having their own methods of capturing these non-conformances ie Non Conformances Reports, Cargo Rejection Note or User Feedback Reports should, wherever practicable, adopt the codes identified in Appendix 9.

Random checks of CCUs will be carried out to establish whether they have been packed in accordance with these guidelines. These checks will be arranged to take place in the presence of the operator, vendor or contractor.

11.2 Cargo Unfit for Shipment

On inspection, any cargo deemed unsafe for shipment will be quarantined and a Cargo Rejection Note (see Appendix 7) raised. Contact will then be made with the appropriate representative to arrange for the fault to be rectified.

11.3 Non Conformance Code

Code numbers are allocated to specific items identified in this document. The code is broken down into the following seven sections and each category can be referenced in Appendix 9.

<table>
<thead>
<tr>
<th>Code</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>CCUs</td>
</tr>
<tr>
<td>200</td>
<td>Lifting and slinging</td>
</tr>
<tr>
<td>300</td>
<td>Dangerous Goods</td>
</tr>
<tr>
<td>400</td>
<td>Documentation</td>
</tr>
<tr>
<td>500</td>
<td>Packing</td>
</tr>
<tr>
<td>600</td>
<td>Others</td>
</tr>
<tr>
<td>700</td>
<td>Positive Feedback</td>
</tr>
</tbody>
</table>

The specifics of the fault should be detailed on the relevant Cargo Rejection Note, see Appendix 7.
12.0 GENERAL DOCUMENTATION

It is important that all documentation is completed in accordance with the following guidance. It must accurately reflect the contents of the package or container being shipped.

Failure to comply with this requirement may result in injury, damage or loss of equipment.

Customs requirements regarding manifests and cargo summary tickets must be fully complied with.

Appendix 7 includes standardised examples of the following documents:

i. Oil & Gas UK Cargo Summary Ticket for Outbound Cargo
ii. Oil & Gas UK Inbound Pocket Checklist
iii. Oil & Gas UK Cargo Summary Ticket for Outbound/Inbound Tanks
iv. Cargo Safety and Security Tags
v. Dangerous Goods and Marine Pollutants Declaration
vi. Dangerous Goods by Air Declaration
vii. Transport Emergency Response Card (TREM card)
viii. Oil & Gas UK Cargo Rejection Note – Sea
ix. Oil & Gas UK Cargo Rejection Note – Air

Instructions for completion are detailed on the relevant forms.
13.0 DANGEROUS GOODS BY SEA

13.1 General

The IMDG Code defines methods of packaging, the types of labels required, and the appropriate information needed to complete the declaration.

The MCA prepares rules relating to the transportation of dangerous goods on offshore support vessels within the UKCS, MGN 282 (M). It is recognised that additional guidance may be given by the MCA in Marine Competent Authority Approval. Requests for assistance in the transportation of dangerous goods by sea can be directed to the MCA at dangerous.goods@mcga.gov.uk (this email address is valid at the time of publication).

It is essential that dangerous goods are packed and marked fully in accordance with regulations as well as having all labelling and placarding in place.

When completing Dangerous Goods Declaration, verify that information on the Materials Safety Data Sheets dated prior to 1st January 2002 corresponds to the latest revision of IMDG Code.

Non-compliance with any of these points may have legal implications and will mean delay until rectified.

The definitions of key persons responsible for dangerous goods are detailed in The Merchant Shipping (Dangerous Goods and Marine Pollutants) Regulations [SI 1997/2367].

“Any incidents, such as incorrectly declared or documented backloads/or shipments or unsafe stowage or incorrect segregation, identified in the supply chain, should be notified to the Environmental Quality Branch of the MCA. Such incidents may be pursued under the Merchant Shipping (Dangerous Goods and Marine Pollutants) Regulations 1997 [SI 1997/2367].”
The cargo will only be accepted if all the above steps have been taken. Failure to comply with any of the above steps will result in rejection.
14.0 DANGEROUS GOODS BY AIR

14.1 General
The legislation governing the carriage of Dangerous Goods is laid down in the “International Civil Aviation Organisation (ICAO) Technical Instructions for the Carriage of Dangerous Goods by Air” it is recognised that the great majority of shippers use the “IATA Dangerous Goods Regulations” (DGRs) as their working document. The IATA DGRs contain all the requirements of the Technical Instructions and also include additional requirements, which may be more restrictive than the Technical Instructions or reflect industry standard practices.

For further guidance and procedures for the shipment of dangerous goods to and from offshore locations by air, refer to relevant documents issued by the Helideck Certification Agency. These documents are also on the Oil & Gas UK CD which contains the Guidelines for the Safe Packing and Handling of Cargo to and from Offshore Locations, Issue 4, November 2008.

It is essential that dangerous goods are packed and marked fully in accordance with regulations as well as having all labelling and placarding in place.

Dangerous Goods must be declared in advance, and be delivered to the appropriate freight shed (heliport/airport) at least two hours prior to the scheduled departure time.

All airfreight is examined for undeclared dangerous goods and any such items found shall be returned to shipper and reported to the relevant authority.

The IATA DGRs are revised on an annual basis and issued each January. When completing Dangerous Goods Declarations, shippers must verify that information complies with the latest revision. Non-compliance with the regulations will have legal implications and incur delay until rectified.

14.2 Dangerous Goods by Air Documentation
The following books and documentation are required:
- Up-to-date copy of IATA Dangerous Goods Regulations
- Copies of the Shippers Declaration
- Copies of the checklists for both non-radioactive and radioactive shipments
- Copies of the Notification to Captains (NOTOC)
- Additional Dangerous Goods labels

In addition to the above, the installation should make provision for:
- The storage and security of packages, prior to loading/after unloading, from the helicopter
- The emergency response steps required in the event of a damaged or leaking package being discovered
- Retention of the paperwork as per DGR 9.8

This provision must be reflected in the appropriate procedures manual for the installation.

14.3 Training
Any person checking in passengers, loading freight or baggage for a helicopter must be trained to an appropriate level of awareness of Dangerous Goods. This training is required even if there is no intention to transport Dangerous Goods by air.
15.0 WASTE MANAGEMENT

The primary legislation for waste management is the Merchant Shipping (Prevention of Pollution by Garbage) Regulations [SI 1998/1377]. The Regulation covers waste produced offshore (fixed or mobile). The OIM of every fixed manned installation or mobile rig, requires to provide a garbage management plan onboard showing roles and responsibilities, waste types produced and a waste collection locator plan.

All offshore locations (fixed and mobile) are regarded as a Waste Producer. The subsequent transfer of waste to an onshore receiving facility is controlled mainly by: Special Waste Amended (Scotland) Regulations [SSI 2004/112]; Special Waste Amended (Scotland) Regulations [SSI 2005/22], Hazardous Waste (England & Wales) Regulations [SI 2005/894], Environmental Protection (Duty of Care) Regulations [SI 1991/2839]; Waste Management Regulations [SI 1996/634]. It should be noted that the waste regulated by the Scottish Environmental Protection Agency (SEPA) in Scotland and by the Environmental Agency (EA) for England and Wales require different paperwork and that the type of paperwork to be used is governed by the port of landing in the UK.

(It should be noted that regulations in Scotland and England/Wales are subject to change out-with the review update of this guideline and it is the "producer's" responsibility to ensure update awareness and compliance.)

Each offshore location is required to prepare and maintain a "Cradle to Grave" Audit Trail of all waste streams generated on the facility. The removal of waste by Supply Vessel may only take place in compliance with the Regulations. The Supply Vessel is regarded as the Waste Carrier and for that reason must hold a Waste Carrier License for moving waste in the UK sector. The Vessel Master is responsible for receiving and discharging waste 'cargo' from the Supply Vessel.

The movement of waste from offshore to final disposal site may require a number of controlled transfers - this is known as the Waste Handling Chain. Within the Waste Handling Chain, the carrier is required to hold copy of all waste transfers. Exchange of signatures on paperwork (Special/Hazardous Waste) is required to take place for each Controlled Waste Note (as issued and controlled by SEPA/EA) prior to transfer to quayside.

In accordance with UK Oil and Gas Industry, Operator Policy and UK National Waste Strategy, all waste is reported showing disposal routing with specific requirement to reduce, re-use and recycle Waste where possible. All locations are required to segregate waste in order to reduce amounts sent to landfill.

The handling of Waste from "Cradle to Grave" is controlled via approved licensed services only. Under the Duty of Care, all Waste Producers are required to ensure that their waste streams move and are received under such condition only. Violation of the Regulations may result in both Company and Individual prosecution by the relevant Regulatory Authority.

CCUs manifested to onshore as “empty” must physically be empty. Any contents must be manifested, regardless of the apparent insignificance, eg pallets, wood, rope, bags, paper, cardboard, packaging. Any hazardous or unidentifiable waste not manifested will be the subject on an investigation.

If at all possible, shipping waste materials in the same container as non waste materials should be avoided.
15.1 **Controlling Waste Offshore**

It is the responsibility of the OIM to ensure that all waste is kept and transferred in a safe and compliant manner. All personnel (including service company personnel and visitors) must follow the Installation Waste Control Policy/Procedures.

Comprehensive guidance is found in Appendix 6 – Offshore Waste Control Pack.

15.2 **Special Waste (Hazardous/Harmful)**

The preparation of a Special/Hazardous Waste Consignment Notes is normally undertaken by the person who prepares the backload manifest. The person preparing the manifest is also responsible for completing the Dangerous Goods (DG) declarations. It is most important that any declared Special/Hazardous Waste is packaged in accordance with applicable Dangerous Goods by Sea Classification code. All waste streams now have an applicable European Waste Catalogue (EWC) code which must appear (as relevant) on waste transfer notes. In addition, normal DG notifications must take place with relevant DG stickers in place as appropriate.

15.3 **Recyclable Waste**

In general, it is necessary for Offshore Operators to segregate recyclable waste streams. Typical recyclable waste is shown as:

i. Paper
ii. Cardboard
iii. Timber
iv. Drums (metal/plastic)
v. Scrap Metals
vi. Cable
vii. Plastics (wrapping/bottles)
viii. Fluorescent Tubes
ix. Batteries
x. Solvents
xi. Drink Cans
xii. Toner Cartridges
xiii. Ink Cartridges
xiv. Electronic equipment
xv. Circuit boards
xvi. Paint tins/paint/brushes, etc
xvii. Oily solids

Collections are encouraged using clear plastic bags to assist with easy identification and hazard spotting for handlers.

It has become normal practice for the waste service provider to establish a help-line for support and assistance on any waste issues to reduce risk, be it technical/administrative.
1.1 Introduction
Offshore tanks are a common feature of most, if not all offshore installations. They are used principally for the containment and transportation of a variety of oils and chemicals as well as returning waste products from offshore locations.

1.2 General
All companies providing chemicals and oils in offshore tanks for owners and operators of offshore installations and all offshore installations returning products and waste to the shore should ensure that:

i. The appropriate type and size of tank is selected for the product to be carried. For more detailed information refer to IMDG Code Chapter 3.2 – Dangerous Goods List and Chapter 4.2 – Use of Portable Tanks.

ii. All lifting equipment, frame and International Maritime Organisation (IMO) certification for the tank is fully in date at the time of use, and has sufficient validity remaining so as to avoid certification expiring when offshore.

1.3 Vessel (Tank) Types
1.3.1 A new coding system (portable tank instruction) for offshore portable tanks was introduced in the 2000 Edition of the IMDG Code and replaces the IMO classification for IMO Type tanks with a UN classification. For details of the transitional provision to the new code refer to Chapter 4.2 – Use of Portable Tanks of the IMDG Code.

1.3.2 IMO Type portable tanks designed, constructed and approved before the 1st of January 2003, under the provisions of the IMDG Code, can continue to be used until the end of their life, provided such tanks are inspected and tested in accordance with 6.7 of the IMDG Code. As the detailed provisions for these tanks are no longer in the current IMDG Code, DSC/Circ 12 was developed to allow the continued use of these tanks.

1.3.3 Offshore tanks (IMO and UN approved) used for the transportation of dangerous goods of classes 3 to 9 should be designed, constructed, inspected and tested in accordance with the provisions of Chapter 6.7 of the IMDG Code.
1.4 **IMO Inspection and Testing of Tank Vessel**

<table>
<thead>
<tr>
<th>INSPECTION AND TESTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time or Interval</td>
</tr>
<tr>
<td>Initial Certification</td>
</tr>
<tr>
<td>At intervals not exceeding 2.5 years (1)</td>
</tr>
<tr>
<td>At intervals not exceeding 5 years (1)</td>
</tr>
<tr>
<td>Where tank vessel shows evidence of damage, corroded areas or leakage</td>
</tr>
</tbody>
</table>

(1) An offshore tank may not be filled and offered for shipment after the date of expiry of the last five year or two and a half year periodic inspection and test. However, an offshore tank filled prior to the date of expiry of the last periodic inspection and test may be shipped for a period not to exceed three months beyond the date of expiry of the last periodic inspection and test. In addition, an offshore tank may be shipped after the expiry of the last periodic inspection and test:

i. after emptying but before cleaning, for the purposes of performing the next required inspection and test prior to refilling; and

ii. unless otherwise approved by the competent authority, for a period not to exceed six months beyond the date of expiry of the last periodic inspection and test, in order to allow the return of dangerous goods for proper disposal or recycling. Reference to this exemption should be mentioned on the shipment documentation.

Further details regarding the inspection and testing of offshore tanks can be found in Chapter 6.7 paragraph 6.7.2.19 of the IMDG Code.

1.5 **General Checks for Offshore Tanks**

The following checks should be carried out as a minimum:

i. Check the condition of the frame and ensure that generally there are no signs of excessive corrosion or deformation.

ii. Ensure that the tank is not overloaded. This can be done by calculating the product weight and comparing the result against the plated maximum payload on the offshore data plate. The following formula should be used to achieve this:

\[
\text{Volume of product in tank} \times \text{Product density} = \text{Payload}
\]

iii. In the case of tanks being shipped full or part-full, ensure there are no signs of leakage.

iv. Check that all certification is fully in date at the time of use, and has sufficient test period remaining so as to prevent certification expiring when offshore. IMO certification should be checked in accordance with paragraph 1.4 of this appendix.

v. Ensure that any old hazard and supply labelling has been removed.

vi. Affix all relevant hazard and supply labelling (where required).
vii. Check all valve assemblies for damage and security ensuring end caps are in place and fastened.

viii. Check the manlid is securely closed.

ix. Check the lifting equipment for any signs of damage or incorrect bridle arrangement.

x. Ensure the fifth leg of the lifting assembly is stowed on the outside of the tank frame for ease of connection to the crane both onshore and offshore.

xi. Check the grating for any signs of damage or loose fittings.

xii. Check the top surfaces for any potential dropped objects.

xiii. Check the forklift pockets for loose items such as tools, stones, dunnage, etc.

After completion of all checks, a Tank Despatch/Return Checklist should be completed for each load being despatched offshore or returned onshore.

An illustration of the checks to be carried out on offshore tanks can be found in Appendix 7.3.

1.5.1 Increasingly, offshore tanks are being fitted with manual vacuum breaker valves at the same end as the main bottom discharge valve. This is to remove the need for personnel to climb on top of the tank to vent prior to discharge.

This valve is sometimes difficult to see through the frame of the tank and must be checked for security.

Where no manual valve exists, the automatic Pressure Vacuum (PV) valve should not be manually over-ridden to facilitate decanting. This valve is intended to operate automatically when the tank pressure or vacuum exceeds predetermined limits. Frequent manual operation has been found to damage the valve and may prevent it operating as intended in an emergency.

1.6 Plate Markings

A typical example of the format for a plate fitted to an offshore IMO tank is shown below.
1.7 Offshore Tank – Key Points from Checklist

- Check grating for damage and security
- Check lining equipment for damage
- Check security of bolts on lid
- Check tank is not overloaded
- Check frame for excessive corrosion and/or deformation
- Check manual vacuum breaker valve (if fitted) at same and as bottom flange discharge valve
- Check top surfaces for loose equipment
- Check offshore data plate and ensure certification is valid and sufficient for proposed use
- Ensure correct hazard labels (if required) on all four sides
- Remove old labels
- Store slings outside the frame (but properly secured for road freight)
- Check valve assemblies for security and damage. Valves to be closed and sealed
- Ensure tank pockets clear of debris
APPENDIX 2 – PORTABLE GAS EQUIPMENT

2.1 Introduction
Gas products are used in various forms on all offshore installations. They are typically transported within portable gas equipment such as racks and quads, although single cylinders in lift frames are also widely used. Such racks and quads are subject to the certification and testing requirements as specified in section 9.

2.2 General
All companies providing gas in portable gas equipment to contractors, owners and operators of offshore installations, and all offshore installations returning transportable gas containers shall ensure that:

i. Suitable cylinder types are used (see 2.3 below).
ii. Portable gas equipment is checked prior to shipment (see 2.4 below).
iii. Specific requirements are met for Gas Quads/Packs/Multiple Element Gas Containers (MEGCs) (see 2.5 below).
iv. Specific requirements are met for Lift Frames (see 2.6 below).

2.3 Cylinder Types
Equipment used for the offshore transportation of dangerous goods of Class 2 should be designed, constructed, inspected and tested in accordance with the provisions of the current IMDG Code (and in particular section 4.1.6, special packing provisions for dangerous goods of class 2), The Carriage of Dangerous Goods and Use of Transportable Pressure Equipment Regulations [SI 2007/1573], and any other appropriate standards (ie BS EN 1968, BS7072, BS EN 12079, DNV 2.7 – 1).

2.4 General Checks for Portable Gas Equipment
All companies providing gas products in transportable equipment for owners and operators of offshore installations and all offshore installations returning products and waste onshore should ensure that their pre-dispatch checks take account of equipment integrity including:

i. No signs of excessive corrosion or deformation.
ii. Slings and shackles fitted, free from damage, and secure (ie split pins/tiewraps fitted).
iii. All certification is fully in date at the time of use, and has sufficient test period remaining so as to prevent certification expiring when offshore.
iv. Any old, irrelevant or confusing hazard and supply labelling has been removed.
v. All relevant hazard and supply labelling (where required) is affixed to equipment, appropriate to the gas contained within.
vi. Equipment is painted in colour appropriate to the gas or gas mixture contained within, in accordance with BS EN 1089 – 3:2004, Transportable gas cylinders – Gas cylinder Identification (excluding LPG) - Part 3: Colour coding.
vii. Forklift pockets are free of any loose items such as tools, stones, debris, etc.
viii. All flat surfaces are free of any potential dropped objects (ie tools). Any that are found must be removed prior to transportation.

ix. Lifting slings are in test, of the appropriate capacity, and that stamp marking identification agrees with test certification supplied.

2.5 Specific Requirements for Gas Quads/Packs/MEGCs

i. Ensure that valves and manifolds are suitably protected with valve guarding mesh.

ii. Ensure that valve guarding mesh is secure and in good condition.

iii. Ensure that all valves are in good condition and operate correctly.

iv. Ensure that manifold is free from damage.

v. All cylinders must be properly secured in frame.

vi. All cylinder valves and king (main) valves are fully closed.

2.6 Specific Requirements for Lift Frames

i. Ensure that door is in good condition and operates correctly.

ii. Where fitted, ensure that the door-securing pin retaining pin is engaged.

iii. Ensure equipment identification number is painted on roof.

iv. Ensure cylinders are properly restrained within lift frame to prevent movement during transit.

v. Ensure positive security of cylinders in rack by strapping, of serviceable condition, is in place. Small cylinders may require additional packing and/or a special container. Bottles shipped in racks without valve protection plates must be capped.
APPENDIX 3 – SPECIAL CARGO

3.1 General
All cargo in this category must be considered as non-routine and the lifting operations planned as in Section 8, Lifting and Slinging.

It is strongly recommended that, when planning the shipment of special cargo, logistics personnel are involved at the earliest opportunity.

3.2 Unusual Shape and Weight Distribution

3.2.1 Further factors, which must be taken into account when assessing unusual items of cargo, are as follows:

i. Items with high and/or offset centre of gravity will be unstable.

ii. Whether any additional securing arrangements are required.

iii. May be shipped or lifted in horizontal position for later up-ending offshore. In these circumstances all aspects of transportation, lifting and installation operations to be subject to a full risk assessment being carried out.

iv. May require use of lifting beams or frames or asymmetric rigging arrangements.

v. During transportation beams or frames must be removed and stowed as separate cargo items. Where removed and subsequently re-attached for the lifting operations a full assessment of the risks involved should be performed. Otherwise they must be secured in a suitable manner to prevent damage.

vi. Long cargo baskets must lift horizontally.

3.2.2 Unusually Heavy Items (>20 tonnes)

i. May require stowage in particular part of vessel’s deck.

ii. Must involve discussion between all parties, including vessel Master.

iii. Must involve assessment of lifting dynamics.

iv. May involve further reduction in environmental criteria for operation.

Experience indicates that lifting of heavy items in significant sea states exceeding approximately 2.0 metres should not normally be attempted.

3.2.3 Unusually Long, Fragile Items

i. May require use of special packing arrangements.

ii. May require the use of tag lines. If it is considered necessary it should only be done after a risk assessment has been undertaken, see Appendix 11.

iii. Items vulnerable to water damage must be suitably protected.

3.2.4 Internal Sea Fastenings in CCUs

Internal Sea Fastenings in CCUs involving welding must only be undertaken following engineering review and consultation with the container fabricator/owner.
3.2.5 *Fragile Items, Pre-assembled and Pre-commissioned Machinery Items Requiring to be Kept Dry*

Because of the fragile nature and the high value of these items, they should be transported in a specially designed lifting frame/module. If not the following points should be considered:

i. These items should be crated in a heavy-duty material to reduce the potential for damage.

ii. The crate should also be made adequately to be able to be lifted from a CCU.

iii. The crate should come complete with its own lifting arrangements.

iv. The crate should be labelled to clearly identify the fragile nature of the goods.

v. The crate should then be loaded into a container ensuring due consideration has been taken for removal when it reaches its final destination. The item should then be secured in the container as detailed within these guidelines.

vi. Consideration should be given to items requiring to be kept dry.

3.2.6 *Special Lifts to Normally Unattended Installations (NUIs)*

Some NUIs have crane weight restrictions, which means that placing even the smallest of equipment in a CCU will lead to the SWL of the crane being exceeded.

Where such crane weight restrictions apply, operations must be risk assessed, with the following points being considered:

i. It may be safer to use fibre slings or suitably coated wire rope slings to lift equipment or place equipment inside and remove equipment from CCUs.

ii. In the case of scaffolding, if it cannot be loaded into a half height container due to crane weight restrictions then it should be pre-slung and secured using steel banding or other suitable alternatives around the bundle to prevent movement.

3.3 *Backloading of Bulk Underdeck Cargo to Support Vessel Tanks*

Vessels supplying the offshore industry are required to carry a variety of bulk liquids in dedicated tanks within the ship to supply installations offshore. It has been noted on a number of occasions that bulk liquids backloaded to ships have been incorrectly declared by offshore installations and drilling rigs, and these products can have the potential to seriously impact the technical integrity of the vessel.

For specific bulk backload procedures refer to Oil & Gas UK Offshore Support Vessel Guidelines. Particular attention is drawn to MGN 283 (M).

3.4 *Bulk Transfer to/from Portable Tanks*

When offshore support vessels are required to carry portable tanks that are to be loaded or discharged whilst onboard, the suggested template as per MCA Disc/Circ 12, Annex 3 “Procedures for the discharge and loading of dangerous goods from portable tanks carried on the deck of offshore supply/support vessels” should be completed and submitted to the local MCA’s Marine office prior to loading the tanks to gain approval. Particular attention is drawn to MGN 282 (M).
3.5 Examples of Special Cargo

1. Membrane Filter Module
2. Blow out Preventer (BOP)
3. Lifeboat in Transportation Frame
4. Coiled Tubing/Cable Reel
5. Fishing Friendly Frame
<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Membrane filter module</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>BOP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frames preferred means of transportation</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Lifeboat in Transportation Frame</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Coiled Tubing/Cable Reel</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Description</td>
<td>Illustration</td>
</tr>
<tr>
<td>----</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>5.</td>
<td>Fishing Friendly</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX 4 – DRILLING TUBULARS

This category includes items, such as drill pipe, risers, conductor, casing and tubing.

4.1 General

The following applies to both individual and bundled tubulars.

4.1.1 Each tubular lift must always be slung with two slings, each of the same length and of the same SWL. The SWL of each sling should be equal to or greater than the Gross Weight of the load. Every tubular lift must lift level.

4.1.2 Slings should be placed at equal distance (approximately 25%) from the ends of the load with the internal angle at the hook not greater than 90°. They should be double wrapped and choked around the tubular. When it is necessary to bundle tubulars of different lengths, the shortest tubular should be no less than 75% of the length of the longest tubular.

4.1.3 In the case of slung tubulars a wire rope grip (DIN 1142 type preferred) or other approved device should be used above the reeved eye that forms the ‘choke’. In addition a tie wrap of robust design should be used on the reeved eye of the sling to prevent the eye from slipping over the rope grip. This arrangement prevents the bundle from coming slack when it’s landed.

Note: The live end of the sling should not be threaded under the first wrap.

4.1.4 Excessively long tubular lifts may have a tag line attached. This should be subject to a risk assessment.

4.1.5 Care should be taken on removing slings due to possible stowage movement.

4.1.6 Tubular ‘stacks’ should be segregated by pipe posts.

4.1.7 The bottom row of a tubular stow should be individually ‘chocked’ at positions forward and aft ends of each joint or secured by other mechanical means to stop movement. This also applies if there is only one row of tubulars.

4.1.8 In preparing tubulars for transportation it is good practice to pick up the tubular lift for a second time to see if more slack can be taken out using clamps or bulldog clips.

4.1.9 The offshore operator may have a requirement for tubulars to be loaded in sequence for discharge at the installation. This can only be completed if a risk assessment has been conducted and all tubular requirements are met.

4.1.10 Ensure thread protectors and endcaps are securely fastened.

4.1.11 Due care and attention should be taken when loading tubulars to avoid damage to slings.

4.1.12 All tubulars should be correctly orientated on the trailers and when loading on vessels.

4.1.13 All backloaded tubulars should be cleaned or capped to prevent spillage of any contaminant.

4.1.14 When shipping loose protectors, it is recommended that they be placed in compactor bags or equivalent before placing in CCU. Care must be given to ensure that the compactor bag’s SWL is not exceeded.
4.2 Bundled Tubulars

4.2.1 Certified transportation frames are considered best practice for smaller dimension tubulars.

4.2.2 Only tubulars of the same diameter should be bundled together and whenever possible should be of similar length.

4.2.3 The number of tubulars in each bundle should be such that the inside/middle tubulars are gripped and will not slip out of the bundle. Whenever practicable tubulars over 5.5” in diameter should be bundled in ‘odd’ numbers.

4.3 Individually Slung Tubulars

4.3.1 Prior to loading individual tubular cargo, bedding rope must be placed at appropriate positions on the vessels intended loading area. The minimum of two certified securing arrangements must be placed at equal distance approximately 25% from the ends of the intended stow. The length and/or height of securing arrangements must be sufficient to ensure that the entire tubular stow is secured.

Examples of certified securing arrangements are: lashing chain, webbing, wire, pipe pins/stanchions, stretchers, ratchets, shackles, etc.

4.3.2 Specifically for vessel loading, only tubulars of the same diameter are to be stowed together and wherever possible should be of similar length to ensure the tubulars are properly secured and positioned between the securing arrangements.

4.3.3 Smaller individual joints or pup joints that cannot be stowed between securing arrangements and are considered to be less than 60% overall length of average joint, must be secured as a separate item or shipped in cargo baskets.

4.4 Examples of Drilling Tubulars

1. Tubing Frame
2. Tubing Bundle
3. Tubing – small frame
4. Tubular Packing System
<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Illustration</th>
</tr>
</thead>
</table>
| 1. | Tubing Frame
Restraining bars to be securely fastened to avoid pipe slipping. | ![Illustration](image1) |
| 2. | Tubing Bundle
Care should be exercised on removing slings due to stowage movement. | ![Illustration](image2) |
| 3. | Tubing – small frame
Secure method of maximising storage and transportation of tubing. | ![Illustration](image3) |
| 4. | Tubular Packing System | ![Illustration](image4) |
APPENDIX 5 – EXAMPLES OF PACKING

1. Air Bag
2. Insert Baskets
3. Container Net
4. Corded Polyester Lashing
5. Door Secondary Securing Device
6. Cord Strap or Lashing
<table>
<thead>
<tr>
<th>No</th>
<th>Description</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Air Bag</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Insert Basket</td>
<td></td>
</tr>
<tr>
<td></td>
<td>For loading inside a closed container (also known as stillage). Do not overload. Consider receiving installation’s freight handling facilities.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Container Net</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ensure bottom and top skirt is fully tightened.</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>Description</td>
<td>Illustration</td>
</tr>
<tr>
<td>----</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>4.</td>
<td>Corded Polyester Lashing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ensure lashing is certified.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use 25mm and 31mm lashing with 1.5 tonne and 2.5 tonne SWL. Heavier SWL lashing is also available.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Door Secondary Securing Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typical methods include:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- "Custom" type metal seals</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Metal "Karabiner"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Heavy duty tie-wrap (10mm minimum width)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Wire door seal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Step Change Inspection Tags</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Certified polyester lashing</td>
<td></td>
</tr>
</tbody>
</table>
Onshore Waste Control Pack

User guide

The following guidelines detail how to safely package and consign offshore wastes:

1. Use the ‘What Waste Where Guide’ to determine:
 a. The correct means to package the waste
 b. Paperwork required to accompany the waste

2. Use the step-by-step instructions to complete the necessary paperwork.

3. If further assistance is required please phone your waste services provider focal point for advice on completing paperwork, choosing packaging, advice on unknown wastes and your legal requirements.
'What Waste Where' Guide - Special/Hazardous Wastes

The following is a guide as to how to package Special/hazardous wastes. If in doubt ask.

<table>
<thead>
<tr>
<th>Waste</th>
<th>Place In</th>
<th>Hazard Info</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerosols</td>
<td></td>
<td>Flammable</td>
<td>No pesticide aerosols.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harmful</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toxic</td>
<td></td>
</tr>
<tr>
<td>Batteries, Alkaline</td>
<td></td>
<td>Corrosive</td>
<td>Household type batteries only. Keep different batteries in separate marked containers.</td>
</tr>
<tr>
<td>Dry & Batteries Ni-Cad Dry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batteries, Lead Acid,</td>
<td></td>
<td>Corrosive</td>
<td>Ensure any leaking batteries are held separately. Keep lead acid batteries away from Ni-Cad batteries.</td>
</tr>
<tr>
<td>or Ni-Cad Batteries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td></td>
<td>Potentially</td>
<td>No oils containing PCBs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carcinogenic</td>
<td></td>
</tr>
<tr>
<td>Paint and Thinners</td>
<td></td>
<td>Flammable</td>
<td>Drained paint and thinners only. No hardeners, activators or isocyanates.</td>
</tr>
<tr>
<td>Stops</td>
<td></td>
<td>Harmful</td>
<td></td>
</tr>
<tr>
<td>Paint Tins, Drained and</td>
<td></td>
<td></td>
<td>Ensure all containers are drained to paint/thinners stops drum.</td>
</tr>
<tr>
<td>Empty</td>
<td></td>
<td>Flammable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Harmful</td>
<td></td>
</tr>
<tr>
<td>Rags Contaminated with Oil</td>
<td></td>
<td></td>
<td>No free liquids.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potentially</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carcinogenic</td>
<td></td>
</tr>
<tr>
<td>Medical Waste –</td>
<td></td>
<td></td>
<td>Used sharps only.</td>
</tr>
<tr>
<td>Sharps</td>
<td></td>
<td>Infectious</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Substance</td>
<td></td>
</tr>
<tr>
<td>Medical Waste – Swabs/Dressings</td>
<td></td>
<td>Infectious</td>
<td>Only soft items allowed inside bags.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Substance</td>
<td></td>
</tr>
<tr>
<td>Gaskets – Asbestos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potentially</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carcinogenic</td>
<td>Gaskets are not accepted as scrap. Assume all gaskets contain asbestos. Gaskets must be double bagged and then drummed.</td>
</tr>
<tr>
<td>Hazardous Liquids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flammable</td>
<td>Ensure that materials are not mixed together and a detailed description is added to the paperwork.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrosive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toxic</td>
<td></td>
</tr>
<tr>
<td>Hazardous Solids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flammable</td>
<td>Ensure that materials are not mixed together and a detailed description is added to the paperwork.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrosive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toxic</td>
<td></td>
</tr>
<tr>
<td>Gas Cylinders</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flammable</td>
<td>Ensure that a detailed description is added to the paperwork.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Corrosive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toxic</td>
<td></td>
</tr>
</tbody>
</table>
Onshore Waste Control Pack

The following is a guide as how to package wastes. If in doubt ask.

<table>
<thead>
<tr>
<th>Waste</th>
<th>Place In</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galley Waste</td>
<td></td>
<td>Remember: glass, plastic and paper are all recyclable. Place clean recyclables into their recycling containers.</td>
</tr>
<tr>
<td>Scrap Metal</td>
<td></td>
<td>No gas cylinders. No general waste. No gaskets. No aerosols. No Special Waste</td>
</tr>
<tr>
<td>Paper and Cardboard</td>
<td></td>
<td>Paper and card can be placed in these containers. Wheelie bins are available for loose paper/card.</td>
</tr>
<tr>
<td>Timber</td>
<td></td>
<td>Timber of all sorts can be recycled. Remove hazards if possible.</td>
</tr>
<tr>
<td>Plastics</td>
<td></td>
<td>Plastic bottles can be recycled. Good quality shrink-wrap (soft plastics) can be recycled. These must not be packaged together. All plastic must be clean and free of contamination.</td>
</tr>
<tr>
<td>General Waste</td>
<td></td>
<td>Remember to bag everything with clear bin bags and place them in waste cubes.</td>
</tr>
<tr>
<td>Plastic Cups</td>
<td></td>
<td>Ensure all liquids are removed from the cups and they are clean. Use the Becca Bins provided and bag the stacks of cups into clear plastic bags.</td>
</tr>
<tr>
<td>Glass</td>
<td></td>
<td>All glass can be recycled. Use wheelie bins or clip-top drums to contain the material. Rinse out bottles and jars first.</td>
</tr>
<tr>
<td>Empty Drums</td>
<td></td>
<td>Make sure all contents are removed. If residue remains then consign as special waste</td>
</tr>
<tr>
<td>Cooking Oil</td>
<td></td>
<td>Cooking oil can be recycled and should not be mixed with mineral oils.</td>
</tr>
<tr>
<td>Water Based Drilling Muds/Brine</td>
<td></td>
<td>Make sure that the description used reflects the type of mud being carried. Oil based mud is special waste, so will require a consignment note.</td>
</tr>
<tr>
<td>Fluorescent Tubes</td>
<td></td>
<td>Only whole tubes can be recycled. Broken tubes should be placed into drums.</td>
</tr>
<tr>
<td>Fridges and Freezers, Electrical Components</td>
<td></td>
<td>Electrical components can be recycled and will need to be packaged separately from general wastes.</td>
</tr>
</tbody>
</table>
Onshore Waste Control Pack

‘What Waste Where’ Guide - Key

Container Types

<table>
<thead>
<tr>
<th>Container Type</th>
<th>Description</th>
<th>Container Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>200 litre Clip-top (Open Head) Drum</td>
<td></td>
<td>6.1 Cu. M Offshore Specification ‘Waste Cube’</td>
</tr>
<tr>
<td></td>
<td>25 litre Clip-top (Open Head) Pail</td>
<td></td>
<td>Half-height Container or Cargo Basket</td>
</tr>
<tr>
<td></td>
<td>Battery Safe</td>
<td></td>
<td>6.1 Cu. M Recycle Unit Waste Cube (also in Red/Blue)</td>
</tr>
<tr>
<td></td>
<td>200 litre Clip-top (Open Head) Drum</td>
<td></td>
<td>1,100 litre Wheelie Bin</td>
</tr>
<tr>
<td></td>
<td>800 litre Waste Safe</td>
<td></td>
<td>Clear Refuse Sack</td>
</tr>
<tr>
<td></td>
<td>9 litre Sharps Bin</td>
<td></td>
<td>2.5 Metre Fluorescent Tube Box</td>
</tr>
<tr>
<td></td>
<td>25 litre Clinical Waste Sack</td>
<td></td>
<td>Gas Cylinder Rack</td>
</tr>
<tr>
<td></td>
<td>25 litre Asbestos Sack</td>
<td></td>
<td>500 Gallon (2200 litre) IMO Tote Tank</td>
</tr>
</tbody>
</table>

Note:

Recycle Centres are flexible, compact, space saving units which can hold a variable combination of containers comprising of 1,100 litre and 240 litre wheelie bins, waste safes and 200 litre drums.
Onshore Waste Control Pack

Special/Hazardous Waste Regulations

Some wastes are harmful to human health or to the environment, either immediately or over an extended period of time. These are called hazardous wastes in England and Wales and Special Wastes in Scotland. If your business produces Hazardous/Special waste you have a ‘duty of care’ to make sure it is disposed of properly.

The waste will fall into one of the three following categories:

- Waste considered to be hazardous under the hazardous waste regulations
 - for example, lead acid batteries, fluorescent tubes

- Waste that is not considered to be hazardous - for example, paper, edible oil

- Waste that needs to be assessed to find out whether it is hazardous or not
 - for example, ink or paint

If a business or operator deposits a fluorescent tube or a computer screen in a skip of otherwise non-special waste, the whole content of the skip would be ‘special waste’. This is important to note when segregating waste offshore.

For ‘special waste’ produced in Scotland or coming in from installations off Scottish shores, you may only use consignment notes or codes issued by the Scottish Environmental Production Agency (SEPA) and for waste produced in England/Wales and coming in from installations that are off English shores you may only use consignment notes that have been approved by the Environmental Agency (EA).
Special Waste Consignment Note - Scotland Only

In accordance with the Special or Hazardous Waste Regulations of 2005 a hazardous waste consignment note must be used to accompany all hazardous waste movements, see below.

![Special Waste Consignment Note](image)

Figure 1 – Special Waste Consignment Note

Filling in a Special Waste Consignment Note Simple Guidance

The consignment note above provides a simple guide to who completes what sections. A more detailed explanation follows.

Red Writing - details that the installation shipping the waste onshore has to complete

Purple Writing - section that waste carrier has to complete

Black Writing - details that the waste management company have to complete but there are exceptions depending on the company

Green Writing - to be completed by ship’s master or shipping agent
Onshore Waste Control Pack

Filling in a Special Waste Consignment Note Detailed Guidance

Section A - Consignment Details

The red writing indicates the information that is required to be completed by the representative on the platform sending the waste to shore. The address of the transfer station can be completed by the waste representative.

Section B - Description Of Waste

Figure 2 – Section A of Special Waste

Figure 3 – Section B of Special Waste
Onshore Waste Control Pack

Section C - Carrier’s Certificate

Where waste is to be retained within the harbour area, this section is to be completed by a person responsible for the holding area. Where the waste is transferred directly out with the harbour area (which is the normal practice), then this is completed by the road carrier removing the waste from the quay.

Figure 4 – Section C of Special Waste

Section D1 & D2 - Consignor’s Certificate and Ship’s Master Details

D1 will be countersigned by the Quayside operator before transfer to the consignee. This is normally the waste management company as they are normally first point of contact when the waste reaches onshore although there are exceptions depending on the company.

D2 is completed by the Ship’s Master.

Figure 5 – Section D of Special Waste

Section E - Consignee’s Certificate

This is completed by the Consignee identified by the Quayside Operator (Transfer Site or Waste Management Site on or off the Quay) who is to take responsibility of the waste.

Figure 6 – Section E of Special Waste
Onshore Waste Control Pack

How to complete a Hazardous Waste Consignment Note (England and Wales)

The note is split into 6 sections:

<table>
<thead>
<tr>
<th>Section</th>
<th>Who Completes?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Consignment Details</td>
</tr>
<tr>
<td>B</td>
<td>Description of Waste</td>
</tr>
<tr>
<td>C1</td>
<td>Ships Master Certificate</td>
</tr>
<tr>
<td>C2</td>
<td>Carriers Certificate</td>
</tr>
<tr>
<td>D</td>
<td>Consignment Certificate</td>
</tr>
<tr>
<td>E</td>
<td>Consignee Certificate</td>
</tr>
</tbody>
</table>

Section A - Consignment Details

1. Insert the hazardous waste consignment note code, relevant to the company. A unique identification number will be applied to the code at the onshore reception facility.
2. Complete producer details - the offshore location where the hazardous waste was produced.
3. Alternative producer, if different from A2.
4. Insert offshore tracking details.

Note: Premises code is not relevant to offshore locations as they are exempt from the requirement to register.

![The Hazardous Waste Regulations 2005: Consignment Note](image)

Figure 7 – Part A of Hazardous Waste Consignment Note
Onshore Waste Control Pack

Section B - Description of the Waste
1. Tick the box referring to the ‘hazardous waste reference list’.
2. Give the number of hazardous waste reference list sheets accompanying the consignment note.
3. Look at the example at the top of the list to see what information must be put into the list.
4. Only one consignment note and ‘hazardous waste reference list’ need to be used for each shipment of hazardous wastes.
5. Once completed, remove the top white copy of the consignment note and keep a copy of the list. Hand the rest of the consignment note and special waste reference list to the ships Master.

Figure 8 – Part B of Hazardous Waste Consignment Note

Section C1 - Ship’s Master Certificate
This will be completed by the Ship’s Master when the hazardous waste is received.

Section C2 - Carrier’s Certificate
This will be completed by transport carrier when the waste is landed onshore.

Figure 9 – Part C of Hazardous Waste Consignment Note
Onshore Waste Control Pack

Section D - Consignors Certificate

Completed by the producer detailing:

1. Offshore location where the waste is produced, or input ‘as A2 above’.
2. Signature of the person completing the consignment note.
3. Date and time the hazardous waste is removed to the ship’s master.

![Figure 10 – Part D of Hazardous Waste Consignment Note](image1.png)

Section E - Consignees Certificate

This is completed at the waste management centre.

Each producer must hold hazardous waste documentation for three years following transfer.

![Figure 11 – Part E of Hazardous Waste Consignment Note](image2.png)
Non-Hazardous Waste Documentation

Non-Hazardous Waste Transfer Note

Northern and Southern North Sea Non-Special/Hazardous Waste Notes

In accordance with the Duty of Care Regulations 1992 and subsequent amendments, a duty of care transfer note, must be used to accompany all controlled waste movements.

Figure 12 opposite is used in Scottish waters and Figure 13 below is used in the southern North Sea.

Please note that these Non-Special/Hazardous waste notes are not used by all companies as the manifest can act as the Duty of Care Note. If in any doubt please check with your Waste Management Focal Point.

Figure 12 – Northern North Sea (Scotland) Non-Special Waste Note

Figure 13 – Southern North Sea (England/Wales) Non-Special Waste Note
Onshore Waste Control Pack

How to complete the Non-Special Waste Transfer Note

- Complete sections as highlighted
- For waste descriptions use the 'non-hazardous reference list' and enter details of each non-hazardous waste in accordance with the example at the top of the list.
- Sign and date the form
- Retain the white copy of the form and a copy of the 'non-hazardous reference list'.
- Hand the rest of the form and the non-hazardous reference list to the Ships Master.

How to complete the Non-Hazardous Waste Transfer Note

The Non-Hazardous waste note has sections for completion by the different parties along the waste’s journey to disposal:

Who Completes What?
- Producer
- Ships Master
- Quayside
- Waste Company

Figure 14 – Completing a Non-Special Duty of Care Note
Onshore Waste Control Pack

Special/Hazardous Waste Documentation

A special/hazardous waste consignment note has many sections that need to be completed by various parties throughout the waste’s journey to final disposal.

As well as having many sections it also comprises of a white, yellow, pink, gold and green layer. This is so there will be a record left at each stage of the waste’s journey therefore providing a complete audit trial of the waste from production to disposal.

For offshore locations the document stages are as follows:

- White Copy - Stays at Offshore Location
- Yellow - Goes to regulator, for example SEPA or the EA
- Pink - Stays with Consignee, for example Waste Transfer Station
- Gold - Stays with carrier
- Green - Vessel Carrying Waste
Special/Hazardous and Non-Special/Hazardous Waste Reference Lists

Waste reference lists for Non-Special/Hazardous, Special/Hazardous and Electrical waste have been created to assist in identifying waste and therefore completing the associated documentation correctly.

The lists contain comprehensive information including the detail required for the ‘Description of the waste’ section on Special/Hazardous waste documentation. They (excluding the WEEE Reference list) also have columns included for unit weight, unit size, quantity and container number so that the lists can be used as an attachment to a consignment note where there several items to be consigned.

These lists are reviewed frequently to ensure they are up to date and are available from your Environmental Business Advisor.

![Image of Non-Special/Hazardous Waste Reference List](image1)

Figure 14 – Example of Non-Special/Hazardous Waste Reference List

![Image of Special/Hazardous Waste Reference List](image2)

Figure 15 – Example of Special/Hazardous Waste Reference List
Onshore Waste Control Pack

WEIEE Reference List

<table>
<thead>
<tr>
<th>Model</th>
<th>Revision</th>
<th>Code</th>
<th>Type</th>
<th>Component</th>
<th>Description</th>
<th>Code</th>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>123</td>
<td>NEES</td>
<td>123</td>
</tr>
</tbody>
</table>

Figure 16 – Example of WEEE Waste Reference List
Onshore Waste Control Pack

Waste Electrical and Electronic Equipment (WEEE)

Restriction of Hazardous Substances (RoHS) and the Battery Directives

The Waste Electrical and Electronic Equipment (WEEE) Regulations apply to electrical and electronic equipment (EEE) with a voltage of up to 1,000 volts for alternating current or up to 1,500 volts for direct current.

An item must meet the following definition in order to fall within the scope of the WEEE Regulations:

- equipment which is dependent on electric currents or electromagnetic fields in order to work properly, or
- equipment for the generation, transfer and measurement of such currents.

'Dependent' means that the equipment needs electricity (for example, not petrol or gas) as its primary energy.

So the general rule is that if you discard anything with a power source (electrical or electronic) it must be sent onshore as special waste.

This means that a special/hazardous waste consignment note must accompany all electrical waste.

IMPORTANT - If you are sending several different items of electrical waste on one consignment note then you have to list each item on the consignment note, if you have items that are exactly the same then you can list them together, for example, 3 HP Laser Printers, 2 Hp monitors.

The Restriction of Hazardous Substances (RoHS) directive restricts the use of six hazardous materials in the manufacture of various types of electronic and electrical equipment. It is closely linked with the WEEE Directive 2002/96/EC which sets collection, recycling and recovery targets for electrical goods.
Onshore Waste Control Pack

RoHS is often referred to as the lead-free directive, but it restricts the use of the following six substances:

1. Lead
2. Mercury
3. Cadmium
4. Hexavalent chromium (chromium \(\text{xxx or } \text{Cr}^{6+}\))
5. Polybrominated biphenyls (PBB)
6. Polybrominated diphenyl ether (PBDE)

PBB and PBDE are flame retardants used in several plastics.

Under the WEEE directive and the RoHS directive, the majority of electrical waste is classed as Special/Hazardous waste and should be consigned appropriately.

The Battery Directive runs in parallel to the Restriction of Hazardous Substances (RoHS), Waste Electrical and Electronic Equipment (WEEE) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) directives.

The primary objective of this directive is to minimise the negative impact on the environment of batteries and accumulators. It prohibits the disposal of untreated industrial batteries to landfill (industrial battery or accumulator means any battery or accumulator designed for exclusively industrial or professional uses) to ensure compliance in offshore locations all batteries have to be segregated and disposed of as Special/Hazardous waste.
Onshore Waste Control Pack

Important Information

Using Clear Plastic Bags

Using clear plastic bags for all your general waste can mean:

- That handlers of your waste can easily identify any hazards therefore reducing the risk of injury
- Non-conformance of the waste regulations can be easily identified and rectified before waste goes to landfill therefore reducing the risk of an environmental incident.
- Less risk of spillage and reduced littering both off and onshore

Management of Waste Offshore

There are waste management good practices that should be applied in your daily tasks, especially in regard to special/hazardous and non-special/hazardous waste which is controlled by legislation.

- Special/Hazardous waste must not be mixed with Non-Special/Hazardous waste
 This is a legislative requirement. Placing one item of special/hazardous material in a non-special/hazardous skip means the whole skip has to be classified as special/hazardous, for example, placing one fluorescent tube in a skip of general waste would mean the whole skip should be classified as special/hazardous. Check your skips/containers/half heights before going onshore for disposal.

- Ensure all Non-Special/Hazardous glass and plastic containers for recycling are rinsed before disposal
 Plastic and glass recycling processors can normally only accept up to 5% contamination. Any more than that and they go for disposal. So ensure that containers are cleaned before going into the recycling bin.

September 2008
Onshore Waste Control Pack

Additional Information

- **Separate brown, green and clear glass**
 Glass must be segregated by its colour. It is recommended to only segregate your most common colour of glass when space is a problem, for example, clear glass and make sure it’s clean.

- **Labelling waste containers**
 Waste coming onshore not labelled correctly or unidentified is still a common problem and carries a substantial safety risk with it. Good practice offshore should, as soon as waste is to be produced, ensure a labelled drum/container is available. If the waste is unusual, for example, a new chemical on the platform, then include a copy of the Safety Data Sheet when consigning the waste for disposal. Check the labelling and packaging requirements with the Dangerous Goods By Sea regulations (IMDG Code).

- **Unidentified Waste**
 If you are unsure of the exact nature of your waste, for example, hazardous sludges, a full analysis will be required prior to consigning the waste to onshore.
 Contact your waste services provider, send a one litre composite sample on a despatch note for the attention of the chemist; give as much detail as possible to what the waste may contain, how it was produced, how much of the waste there is and your contact details.

Useful Links

NetRegs www.netregs.gov.uk/netregs/
BERR Oil and Gas Website www.og.berr.gov.uk/
Oil & Gas UK Environmental www.ukoaevironmentallegislation.co.uk/
SEPA (Special Waste Management) www.sepa.org.uk/guidance/waste/amendment_faq.htm
APPENDIX 7 – DOCUMENT EXAMPLES

Examples of documents used in these guidelines are listed below:

7.1 Oil & Gas UK Cargo Summary Ticket for Outbound Cargo
7.2 Oil & Gas UK Inbound Pocket Checklist
7.3 Oil & Gas UK Cargo Summary Ticket for Outbound/Inbound Tanks
7.4 Cargo Safety and Security Tag
7.5 Dangerous Goods and Marine Pollutants Declaration
7.6 Dangerous Goods by Air Declaration
7.7 Transport Emergency Response Card (TREM card)
7.8 Oil & Gas UK Cargo Rejection Note – Sea
7.9 Oil & Gas UK Cargo Rejection Note – Air
7.1 Oil & Gas UK Cargo Summary Ticket for Outbound Cargo

OIL & GAS UK CARGO SUMMARY TICKET FOR OUTBOUND
(Use Specialist Cargo Summary Tickets for Tanks)

TO – OPERATIONS DEPARTMENT/BUSINESS UNIT

COLLECT FROM (SUPPLIER ADDRESS) DATE TELEPHONE NUMBER

OFFSHORE LOCATION TO BE SHIPPED TO SAILING DATE VESSEL NAME

<table>
<thead>
<tr>
<th>ITEM No</th>
<th>DESCRIPTION/TYPE OF UNIT OR NO/TYPE OF JOINTS</th>
<th>UNIT ID OR NO OF BUNDLES</th>
<th>UNIT DIMENSIONS (L x W x H) (FEET)</th>
<th>ACTUAL WEIGHT OF LIFT</th>
<th>MAX GROSS WEIGHT</th>
<th>IMDG CLASS/ & UN NO</th>
<th>CUSTOMS STATUS</th>
<th>LAST TEST DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CARGO CHECKLIST

1. Does the inspection plate show at least one month full remaining before statutory examination is due?
2. Are the units free from excessive corrosion or holes? (Pay particular attention to doors, floors and hinges.)
3. Are all drainage holes clear on open CCUs?
4. Are all lifting sets properly fitted and configured, ie not twisted?
5. Have all slings been checked for damage and split pins correctly fitted?
6. Have you checked for and removed any loose objects, eg tools, debris on the lift or in the forklift pockets?
7. Has the destination label been added? (NB, name of Platform not Field.)
8. Are items packed to prevent movement/damage, and adequate for "Worst Weather conditions?"
9. Where appropriate, has Dangerous Goods cargo been notified and the container correctly labelled on all four sides (as per IMDG code)? – Chemical Tanks must have a product label attached to the tank.
10. Is the cargo retaining net secure and positioned to prevent goods falling out?
11. Have adequate precautions been taken to prevent snagging of lifting set on the cargo in open units?
12. Are the doors and locking mechanisms secure with locking device attached? (Including Secondary Securing Device)
13. Does the load lift horizontally?
14. Is Actual Weight less than or equal to Maximum Gross Weight?
15. If Actual Weight is seven (7) tonnes or above, has Heavy Lift pennant been attached?
16. Have all tubulars been slung correctly?

If container is empty, only points 1 to 7 apply.

PRINT NAME

SIGNATURE

POSITION IN COMPANY

All checklist items must be completed prior to despatch.

This document, which stipulates the minimum checks to be completed, must accompany goods to the ultimate destination in order to ensure the correct identification of goods.

Where there are multiple truckloads, one copy is to accompany each truck with the relevant items highlighted. For hazardous cargo, a copy of the dangerous goods declaration must be faxed/ emailed along with this form.

Hazardous goods arriving without notification WILL NOT be shipped.

Issue 4 November 2008
7.2 Oil & Gas UK Inbound Pocket Checklist

CCU Number (Container/Basket, etc)

<table>
<thead>
<tr>
<th>Cargo Checks</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have any potential dropped objects been removed or secured? (Please check on top of units and inside forklift pockets.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the deck lifts basket/container still within certification?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are all items detailed on the Consignment Note in the basket/container?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has all material within the basket/container been adequately secured for sea transportation?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the container door locking mechanisms fully engaged?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have all container doors been tie wrapped?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is container in good condition? Any defects to be reported and appropriate action taken.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the lifting bridles in good condition and shackle secure with split pins in place?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is load over 7t? If so, attach "Heavy Lift Flag" to rigging.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the load lift horizontally in both axes? (<0.5' in 20')</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there any fuels, oils or potential pollutants being transported within the equipment? (Oil in reservoir or sumps, fuel in fuel tanks, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are there any hazardous goods in the consignment?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If there are hazardous goods, are there the necessary numbers of hazard labels attached to the CCU.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have you included SEPA notes/Material Safety Data Sheets with the consignment notes?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If there are no hazardous goods, have all hazard labels from outward shipment been removed?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Name: (please print clearly)

Company:

Date: / /

Signed copy to be retained offshore for 3 months. November 2008
7.3 Oil & Gas UK Cargo Summary Ticket for Outbound/Inbound Tanks

OIL & GAS UK CARGO SUMMARY TICKET FOR OUTBOUND/INBOUND TANKS

CUSTOMER

<table>
<thead>
<tr>
<th>ITEM No</th>
<th>TANK NO</th>
<th>TANK SIZE</th>
<th>TARE + PAYLOAD</th>
<th>MAX GROSS WEIGHT</th>
<th>IMDG CLASS</th>
<th>UN NO</th>
<th>CUSTOMS STATUS</th>
<th>PRODUCT*</th>
<th>LAST TEST DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Product or Waste Type

TANK CHECKLIST

<table>
<thead>
<tr>
<th>Y/N</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Does the Inspection plate show at least one full month remaining before statutory examination is due for tank vessel, frame, slings and lifting points?
2. Where appropriate, has Dangerous Goods cargo been notified and the container correctly labelled on all four sides (as per IMDG code)?
3. Are all fill/discharge valves closed, including any kick rods?
4. Are all dip and vent valves closed?
5. Are all manlids securely fastened?
6. Are all caps and couplings present and secure?
7. Framework, structure, paintwork, gratings, walkways, ladders in good condition?
8. Have you checked for and removed any loose objects, eg tools, debris on the tank or in the forklift pockets?
9. Where applicable, have copies of all relevant certificates, dangerous goods notes, material safety data sheets and TREM cards been despatched with tanks?
10. Have you checked that there are no obvious signs of damage to lifting points and slings?
11. Have gross weights been checked against SWL?
12. Has the destination label been added? (NB, name of Platform not Field)
13. If Actual Weight is seven (7) tonnes or above, has Heavy Lift pennant been attached?

Note: Any “NO” will result in the non-shipment of the tank.

SIGNATURE

<table>
<thead>
<tr>
<th>PRINT NAME</th>
<th>POSITION</th>
<th>DATE</th>
</tr>
</thead>
</table>

This document must accompany goods to the shipping port in order to ensure the correct identification of goods. Where there are multiple truckloads, one copy is to accompany each truck with the relevant items highlighted. For hazardous cargo, a copy of the dangerous goods declaration must be faxed/emailed along with this form. Hazardous goods arriving without notification WILL NOT be shipped.
7.4 Cargo Safety and Security Tags

![Inbound Load Security Tag](image)

Specification:
- **Size:** 180mm x 90mm
- **Stock:** 105gsm Tyvek
- **Printed:** Colour 2 sides
- **Drilled:** 1 hole and fitted with plastic eyelet
Dangerous Goods and Marine Pollutants Declaration

Dangerous Goods Declaration and Certificate of Packing

In compliance with the Merchant Shipping (Dangerous Goods & Marine Pollutants) Regulations 1997 SI 2367

<table>
<thead>
<tr>
<th>UN No</th>
<th>Proper Shipping Name</th>
<th>Class or Division</th>
<th>Sub-Risk</th>
<th>Packing Group</th>
<th>Schedule No for Class 7</th>
<th>Flash Point ≤ 60 °C</th>
<th>Number and Type of Packages</th>
<th>Ltd Qty</th>
<th>Gross Quantity (Mass or Volume)</th>
<th>Marine Pollutant Yes/No</th>
<th>EmS Code</th>
<th>Tank or Container ID Number</th>
</tr>
</thead>
</table>

Declaration:

“I hereby declare that the contents of this consignment are fully and accurately described above by the Proper Shipping Name and are classified, marked, labelled or placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations.”

Name and Status of Declarant:

Date:

Signature:

Container/Vehicle Packing Certificate:

It is declared that the packing of the goods into the container/vehicle has been carried out in accordance with the provisions shown overleaf.

Name of Company:

Signature:

Date:
Dangerous Goods Declaration Completion Guide

1. Shipper’s name and address.
2. Name of vessel.
3. Originator’s reference (optional).
4. Emergency telephone number.
5. Name of location goods are destined for.
6. Port or name of installation of departure.
7. Voyage reference (for Shipping Department use only).
8. Vessel departure date.
10. The proper shipping name is considered to be that portion of the entry most accurately describing the goods that is shown in capital letters in the individual schedules or in the general index of the IMDG Regulations; Trade Names alone shall not be used. Dangerous Goods or Marine Pollutants transported under one of the NOS (not otherwise specified) or generic entries require a recognised chemical name in parenthesis after the NOS or generic entry. The words MARINE POLLUTANT should follow the recognised chemical name where appropriate. NOTE – empty packages (including portable tanks and bulk packaging) containing residues shall be indicated by placing the words EMPTY, UNCLEANED or RESIDUE – LAST CONTAINED before or after the proper shipping name. If Waste Dangerous Goods (other than radioactive waste) are being transported for disposal, the proper shipping name should be preceded by the word WASTE.
11. Class/Division including compatibility groups if Explosive, as found in IMDG Regulations.
12. Indicate the class number(s) of any subsidiary risks.
13. The packing group for a substance carried under a NOS entry or other generic entry which includes the possibility of the assignment of more than one Packaging Group.
14. For Class 7 Radioactive Materials only, the Class Schedule Number, as found in IMDG Regulations.
15. Minimum flashpoint of 60 °C or below.
16. The number and kind of packages including UN Identification if applicable, ie “1 x 4G Fireboard Box”.
17. Indicate whether material is being shipped under limited quantity provisions.
18. The Total Quantity of Dangerous Goods covered by the description (by volume or mass, as in the case of goods of Class 1 by the Net Explosive Mass of the contents).
19. Indicate if the goods are a Marine Pollutant or not (Yes or No).
20. Emergency Schedule Number as found in Regulations.
21. Container or Tank Identification Number.
22. Name, Status and Signature of person responsible for packaging the goods and completing the declaration.
23. Name, Company Name and Signature of person responsible for packing Container.
Container/Vehicle Packing Certificate

It is certified that:

Those responsible for the packing of Dangerous Goods into a freight container should provide a “Container Packing Certificate” certifying that this has been properly carried out and embodying the following provisions:

- The cargo transport unit was clean, dry and apparently fit to receive the goods.
- If the consignments include goods of Class 1, other than Division 1.4, the freight container is structurally serviceable in conformity with Chapter 7.4.6 of the IMDG Code.
- Goods which should be segregated have not been packed together onto or in the cargo transport unit (unless approved by the competent authority concerned in accordance with 7.2.2.3).
- All packages have been externally inspected for damage, leakage or sifting, and that only sound packages have been loaded.
- Drums have been stowed in an upright position, unless otherwise authorised by the competent authority.
- All packages have been properly packaged onto or in the cargo transport unit and secured.
- When Dangerous Goods are transported in bulk packagings, the cargo has been evenly distributed.
- The cargo transport unit and the packages therein are properly marked, labelled and placarded.
- When solid carbon dioxide (dry ice) is used for cooling purposes, the cargo transport unit is externally marked or labelled in a conspicuous place such as the door end, with the words “DANGEROUS CO₂ GAS (DRY ICE) INSIDE, VENTILATE THOROUGHLY BEFORE ENTERING”.
- The Dangerous Goods Transport Document required in 5.4.1 of the General Introduction to the International Maritime Dangerous Goods Code (IMDG Code) has been received for each Dangerous Goods consignment packed onto or in the cargo transport unit.

THE SIGNATURE GIVEN OVERLEAF MUST BE THAT OF THE PERSON CONTROLLING THE CONTAINER LOADING OPERATION. AFTER THE CONTAINER/VEHICLE HAS BEEN PACKED, THE CERTIFICATE MUST BE GIVEN TO THE DRIVER ON COLLECTION AND PRESENTED TO THE CONTAINER VEHICLE OPERATOR UPON DELIVERY.

DECLARATION

The company preparing this note declares that to the best of their belief the goods have been accurately described, their quantities, weights and measurements are correct and at the time of dispatch they were in good order and good condition.

DANGEROUS GOODS DECLARATION

I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name(s), and are classified, packaged, marked and labelled/placarded, and are in all respects in proper condition for transport according to applicable international and national government regulations.
7.6 Dangerous Goods by Air Declaration

SHIPPER’S DECLARATION FOR DANGEROUS GOODS

<table>
<thead>
<tr>
<th>Shipper</th>
<th>Air Waybill No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Page of Pages</td>
</tr>
<tr>
<td></td>
<td>Shipper’s Reference Number</td>
</tr>
<tr>
<td></td>
<td>(Optional)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consignee</th>
<th>For optional use for Company logo name and address</th>
</tr>
</thead>
</table>

Two completed and signed copies of this Declaration must be handed to the operator.

TRANSPORT DETAILS

This shipment is within the limitations prescribed for:

| PASSENGER AND CARGO AIRCRAFT ONLY |

WARNING

Failure to comply in all respects with the applicable Dangerous Goods Regulations may be in breach of the applicable law, subject to legal penalties.

<table>
<thead>
<tr>
<th>Airport of Departure:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Airport of Destination:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Shipment type (delete non-applicable):</th>
</tr>
</thead>
</table>

NATURE AND QUANTITY OF DANGEROUS GOODS

<table>
<thead>
<tr>
<th>UN or ID No</th>
<th>Proper Shipping Name</th>
<th>Class or Division (Subsidiary Risk)</th>
<th>Packing Group</th>
<th>Quantity and type of packing</th>
<th>Packing Inst</th>
<th>Authorisation</th>
</tr>
</thead>
</table>

| Dangerous Goods Identification | |
|-------------------------------| |

Additional Handling Information

I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labelled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. I declare that all of the applicable air transport requirements have been met.

<table>
<thead>
<tr>
<th>Name/Title of Signatory</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Place and Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Signature (see warning above)</th>
</tr>
</thead>
</table>
7.7 Transport Emergency Response Cart (TREM Card)

TRANSPORT EMERGENCY CARD (Road)

LOAD
CORROSIVE LIQUIDS, NOT FLAMMABLE
- Name of Substance(s): HYDROCHLORIC ACID.
- Coloured liquid or paste – Perceptible odour.
- Completely miscible with water.

NATURE OF DANGER
- Highly corrosive. Contact with liquid causes severe damage: to eyes, to skin.
- The vapour may be invisible. The vapour may be heavier than air and spread along the ground.
- Heating will cause pressure rise with risk of bursting and subsequent explosion.
- Decomposition in a fire: production of toxic fumes. The effect of inhalation may be delayed.

PERSONAL PROTECTION
- Suitable respiratory protective device.++
- Goggles giving complete protection to eyes.
- Apron or other light clothing, boots and plastic or rubber gloves.
- Eyewash bottle with clean water.

GENERAL ACTIONS BY THE DRIVER
- Stop the engine.
- No naked lights. No smoking.
- Mark roads and warn other road users or passers-by.
- Keep public away from danger area. Keep upwind.
- Notify police and fire brigade as soon as possible.

ADDITIONAL AND/OR SPECIAL ACTIONS BY THE DRIVER
- Any action only if without personal risk.
- If practicable: use shovel, broom, small collecting container.
- Avoid direct contact with substance.
- Stop leaks if without risk.
- Prevent liquids entering water courses, sewers, basements and workpits.
- Contain or absorb leaking liquid with sand or earth or other suitable material.
- If substance has entered a water course or sewer or been spilt on soil or vegetation, advise police.

FIRE (Information for the driver in case of fire)
- Do not attempt to deal with any fire involving the load.

FIRST AID
- If substance has got into eyes, immediately wash out with plenty of water. Continue treatment until medical assistance is provided.
- Remove contaminated clothing immediately and wash affected skin with soap and water.
- Seek medical treatment when anyone has symptoms apparently due to inhalation, swallowing or contact with skin or eyes.
- Persons who have inhaled the fumes produced in a fire may not show immediate symptoms. Patient must be kept under medical supervision for at least 24 hours.

SUPPLEMENTARY INFORMATION FOR EMERGENCY SERVICES
- Keep container(s) cool by spraying with water if exposed to fire.
- Extinguish with waterspray, foam or dry chemical.
- Do not use water jet.

ADDITIONAL INFORMATION

--- Taylors Industrial Services Limited, Hareness Circle, Altens Industrial Estate, ABERDEEN, AB12 3LY
Tel: (01224) 872972

© CEFIC Prepared by CEFIC from the best knowledge available:

no responsibility is accepted that the information is sufficient or correct in all cases.

UN No: ________________ HI No: 80

/ /, +, ++ and +++ refer to separate ‘Guides to optional and alternative phrases’ sheet for method of deletion.

APPLIES ONLY DURING ROAD TRANSPORT ENGLISH

ENGLISH TELEPHONE: English

EMERGENCY TELEPHONE: English

ISSUED: 2000

Issue 4 November 2008 101
7.8 Oil & Gas UK Cargo Rejection Note – Sea

OIL & GAS UK CARGO REJECTION NOTE – SEA

This form is issued in accordance with the “Oil & Gas UK Guidelines for Safe Packing and Handling of Cargo to and from Offshore Locations”.

TO (CONSIGNOR) CC (OPERATOR)

FROM (PRINT NAME) MATERIALS DETAILS

Operations Manager

BASE DESTINATION

You are advised that your freight has been rejected for onward transportation to the destination noted above for the following reason(s).

REASON(S) FOR REJECTION – PLEASE CHECK ALL THAT APPLY

<table>
<thead>
<tr>
<th>Reason</th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No ID, gross or tare weight on CCU.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCU in poor condition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCU out of date/certification.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potential Dropped Object.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment loaded over the height of the CCU.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No MSDN or TREM Card with goods.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrectly packaged material.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight of freight not indicated on package.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight consists of undeclared Dangerous Goods.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labelling is not in accordance with IMDG Dangerous Goods Regulations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twisted lifting equipment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect slings used for goods.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid leaking from CCU.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tie wraps/split pins missing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCU overweight.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labelling incorrect/old placards still on CCU.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Container doors not sealed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect colour code used.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signs of wear or damage to sling set.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrect documentation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight poorly packaged in respect of Manual Handling issues.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freight has not been packaged in accordance with current IMDG Dangerous Goods Regulations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorrectly completed IMDG declaration.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trapped slings and snagged equipment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Certification received with goods.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid leaking from package.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FURTHER INFORMATION (INCLUDE NON CONFORMANCE CODE IF APPLICABLE)

SIGNATURE DATE

Issue 4 November 2008 102
This form is issued in accordance with the “Oil & Gas UK Guidelines for Safe Packing and Handling of Cargo to and from Offshore Locations”.

TO (CONSIGNOR)	CC (FREIGHT FORWARDER)

FROM (PRINT NAME)	FREIGHT DETAILS

Freight Shed Supervisor |

BASE	DESTINATION

You are advised that your freight has been rejected for onward transportation to the destination noted above for the following reason(s).
Please contact this office at your earliest convenience to arrange collection of the rejected freight/discuss future transportation.

REASON(S) FOR REJECTION – PLEASE CHECK ALL THAT APPLY

<table>
<thead>
<tr>
<th>Reason</th>
<th>Checked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivered less than one hour prior to scheduled departure time (shall be transferred to next available flight.)</td>
<td>☐</td>
</tr>
<tr>
<td>Final (full) destination not indicated on freight.</td>
<td>☐</td>
</tr>
<tr>
<td>Consignor’s name not indicated on freight.</td>
<td>☐</td>
</tr>
<tr>
<td>Consignee’s name not indicated on freight.</td>
<td>☐</td>
</tr>
<tr>
<td>Full and accurate description of freight not indicated on freight.</td>
<td>☐</td>
</tr>
<tr>
<td>Weight of freight not indicated on freight.</td>
<td>☐</td>
</tr>
<tr>
<td>Freight poorly packaged to endure flight safely.</td>
<td>☐</td>
</tr>
<tr>
<td>Total freight for this flight exceeds aircraft weight limit.</td>
<td>☐</td>
</tr>
<tr>
<td>Freight has been packed using banned materials.</td>
<td>☐</td>
</tr>
<tr>
<td>Freight has not been packaged in accordance with current IATA Dangerous Goods Regulations.</td>
<td>☐</td>
</tr>
<tr>
<td>Labelling is not in accordance with IATA Dangerous Goods Regulations.</td>
<td>☐</td>
</tr>
<tr>
<td>Warning/orientation labels etc are missing/poor.</td>
<td>☐</td>
</tr>
<tr>
<td>Final (full) destination not indicated on manifest.</td>
<td>☐</td>
</tr>
<tr>
<td>Consignor’s name not indicated on manifest.</td>
<td>☐</td>
</tr>
<tr>
<td>Consignee’s name not indicated on manifest.</td>
<td>☐</td>
</tr>
<tr>
<td>Full and accurate description of freight not indicated on manifest.</td>
<td>☐</td>
</tr>
<tr>
<td>Weight of freight not indicated on manifest.</td>
<td>☐</td>
</tr>
<tr>
<td>Freight poorly packaged in respect of manual handling issues.</td>
<td>☐</td>
</tr>
<tr>
<td>Individual weight of this piece exceeds limits set for Manual Handling.</td>
<td>☐</td>
</tr>
<tr>
<td>Freight consists of undeclared Dangerous Goods.</td>
<td>☐</td>
</tr>
<tr>
<td>Manifest has not been completed in accordance with current IATA Dangerous Goods Regulations.</td>
<td>☐</td>
</tr>
<tr>
<td>Labelling is inadequate for duration of flight.</td>
<td>☐</td>
</tr>
</tbody>
</table>

FURTHER INFORMATION (INCLUDE NON CONFORMANCE CODE IF APPLICABLE)

SIGNATURE	**DATE**

Issue 4 November 2008 103
Lifting Operations Flowchart

Categories of Lift

Routine

- **Routine Crane Operations/Lifting Operation**
 - e.g. Deck operations, boat transfers
 - Suitable environmental conditions
 - Load with known and evaluated weight, shape and centre of gravity.
 - Standard rigging arrangements

Control Measures

- Written procedures exist for this lifting operation
- Lifting operations confirmed to be identical to written procedure
- Carried out by competent personnel
- Toolbox Talk Held
- Person in control of lifting operations
- Individual responsibilities allocated

Non-Routine

- **Simple or Basic Lifting Operation**
 - Only one item of lifting equipment
 - Standard rigging arrangement
 - Stable, known weight with adequate lifting points
 - Outwith sensitive, difficult or restricted area

- Carried out by competent personnel, e.g. Riggers, Deck Crew and others who have training in hoisting and lifting/rigging skills
- May have a written lifting plan or method documented in Rigging and Lifting Handbook
- Risk assessment undertaken using Task Risk Identification Checklist (TRIC)
- Toolbox Talk Held

- **Complicated or Standard Lifting Operation**
 - Cannot be classified as a simple or basic lifting operation
 - Lifting personnel
 - Extended duration, e.g. more than one shift
 - Use of two or more items of lifting equipment (Tandem lifts)
 - Within sensitive, difficult or restricted area

- Risk assessment undertaken
- The Competent Person plans lifting operation and procedures written lifting plan
- Permit to Work required
- Carried out by competent Riggers/ Crane Operators
- Supervised by Competent Person
- Toolbox Talk Held

- **Complex or Specialised Lifting Operation**
 - Lifts over live plant
 - Unknown or difficult to estimate centre of gravity
 - Non-standard rigging or equipment
 - Lifts which cannot be classified as complicated

- Risk assessment undertaken
- Impact/Hazard Study undertaken
- Onshore engineering input to method statement and lifting plan
- Permit to Work
- Carried out by competent Riggers/ Crane Operators
- Supervision of Operations by Competent Person
- Toolbox Talk Held
APPENDIX 9 – NON CONFORMANCE CODE CHECKLIST

100 Container Carrying Unit

101 Faulty structure, bad condition, corrosion or deformation and doors not secure
102 Overloaded, overweight
103 Out of date certification, insufficient test period remaining
104 Void
105 Void
106 Drainage holes blocked (open top)
107 Restraining nets not in place
108 Potential dropped objects
109 Faulty door locking mechanism
110 Loaded above desired level (open top)
111 Liquid leaking
112 Incorrect unit for cargo
113 Uncontrolled modifications to container

200 Lifting and Slinging

201 Incorrect colour code (where applicable), unclear unique number and SWL
202 Signs of wear, corrosion, abrasion, and mechanical damage
203 Incorrectly slung or incorrectly fitted sling set
204 Incorrect SWL for load being moved
205 Incorrect shackle components ie pin size and type
206 Inadequate shackle pin security
207 Incompatible materials used in shackle, pin and body components
208 Incorrect or no Certification
209 Trapped or snagged lifting set
210 Twisted lifting set

300 Dangerous Goods

301 Incorrect or missing labels, or old labels not removed
302 Incorrect or missing documentation
303 Incorrect, inadequate or damaged packaging

400 Documentation

401 Incorrect or missing Cargo Summary Ticket
402 Incorrect or missing Material Safety Data Sheet
403 Incorrect or missing Transport Emergency Response Card (TREM card)
404 Incorrect or missing Shipping Manifest
405 Incorrect or missing Consignment Note
406 Incorrect or missing Special/Non Special Waste Consignment Note
407 Incorrect or missing Air Transport Documentation

500 Packing

501 Incorrectly or unsatisfactory Labelling (not Dangerous Goods)
502 Incorrectly stowed and secured
503 Incorrect weight distribution or excessive loading
504 Inadequate for shipping
505 Liquid leaking from contents

600 Others

700 Positive Feedback
APPENDIX 10 – ABNORMAL OR WIDE LOAD MATRIX

Typical Example:

Abnormal or Wide Loads are subject to the local restrictions.

Abnormal / Wide Loads

Generally Abnormal Loads exceed:
- 9' 6" or 2.9m in WIDTH
- 16' 6" or 5.03m in HEIGHT
- 38,000kg in GROSS WEIGHT

Escortable abnormal loads WILL NOT BE MOVED:
- 1) During the hours of darkness
- 2) When visibility is poor
- 3) During the "rush hour" traffic

Non escortable abnormal loads WILL NOT BE MOVED
- 1) During the hours of darkness
- 2) When visibility is poor
- 3) During the "rush hour" traffic

Abnormal Loads NOTIFICATION:
- Escortable abnormal loads: two (2) days by phone/fax
- Non escortable abnormal loads: one (1) day by phone/fax

Non escortable abnormal loads WILL NOT BE MOVED
- as above without Police permission.

Escortable loads:
- Two (2) days by phone/fax

Non escortable loads:
- One (1) day by phone/fax

(These must be advised by 1600hrs.)

Dimensions Exceeding

<table>
<thead>
<tr>
<th>Dimensions Exceeding</th>
<th>Police</th>
<th>Notify Others</th>
<th>2nd Man</th>
<th>Special Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td></td>
<td>Police Escort</td>
<td>Police</td>
<td>Escort Special Instructions</td>
</tr>
<tr>
<td>9' 6"</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>2nd Man Notify Others</td>
</tr>
<tr>
<td>11' 6"</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>12' 6"</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>13' 6"</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>14' 2" to 22' 9"</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>over 22' 9"</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Length</th>
<th></th>
<th>Notify Others</th>
<th>2nd Man</th>
<th>Special Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>60'</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>61' 2"</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>85'</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>90'</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>100'</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th></th>
<th>Roads Section</th>
<th>Roads Section</th>
<th>Roads Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>38,000kg</td>
<td>Yes</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>100,000kg</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>150,000kg</td>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Height

<table>
<thead>
<tr>
<th>Height</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16' 6"</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Dimensions Exceeding

<table>
<thead>
<tr>
<th>Width</th>
<th>Length</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>9' 6"</td>
<td>290m</td>
<td>3.51m</td>
</tr>
<tr>
<td>11' 6"</td>
<td>3.81m</td>
<td>4.30m</td>
</tr>
<tr>
<td>12' 6"</td>
<td>4.11m</td>
<td>4.30m</td>
</tr>
<tr>
<td>13' 6"</td>
<td>4.41m</td>
<td>5.01m to 6.96m</td>
</tr>
<tr>
<td>14' 2"</td>
<td>4.71m</td>
<td>6.26m</td>
</tr>
<tr>
<td>16' 5"</td>
<td>5.60m</td>
<td>6.26m</td>
</tr>
<tr>
<td>over 22' 9"</td>
<td>6.26m</td>
<td>6.26m</td>
</tr>
</tbody>
</table>

Notify Police

- Yes
- No

Police Escort

- Yes
- No

Notify Others

- Yes
- No

2nd Man

- Yes
- No

Special Instructions

- Yes
- No
APPENDIX 11 – USE OF TAG LINES

11.1 Introduction

In certain circumstances light, soft lines may be used to assist in the handling of long and/or fragile items of cargo. These are often referred to as tag lines.

It must be recognised that, whilst such aids may assist operations, their use does introduce some additional risks, as described below.

11.2 Risks

Additional risks associated with the use of tag lines include the following:

i. Potential injuries from dropped objects as a result of personnel handling cargo having to work in closer proximity to suspended loads than would normally be the case.

ii. Potential injuries resulting from personnel handling cargo being dragged across the handling area, through a heavy load rotating in an uncontrolled manner and the tag line being fouled in limbs or clothing.

iii. Potential injuries resulting from tag lines being secured to adjacent fixed structures parting and whipping back as a result of a heavy load rotating in an uncontrolled manner.

11.3 Mitigation of Risks

11.3.1 Make-up of Lines

Make-up of lines includes the following:

i. Tag lines must be made up from single, continuous lengths of rope.

ii. Apart from the knot attaching the line to the cargo, there must be no other joints or knots in the line.

iii. Tag lines must be of sufficient length to allow personnel handling cargo to work in a safe position well clear of the immediate vicinity of the load. In this regard it is recommended that the length of the line should be not less than one and a half (1.5) times the maximum height above the handling area at which the arrangements will be used.

11.3.2 In Use

Whilst in use, precautions should be observed as follows:

i. Tag lines are an aid to positioning the load when landing, and as such must only be used when weather conditions would permit the lifting of the item without the use of such arrangements. It must not be assumed that, in conditions more severe than this, the use of tag lines will allow the operation to be completed safely.

ii. At all times personnel handling tag lines must work at a horizontal distance from the load equivalent to its height above the handling area, maintaining an angle between the line and the horizontal of not more than 45°.

iii. All sections of the line, including slack, must be kept in front of the body, between the handler and the load.

iv. Where two or more persons are handling the same line, ALL must work on the same side of the line. Any slack must be kept in front of the group.
v. Tag lines must be held in such a manner that they can be quickly and totally released. They must not be looped around wrists, or other parts of the body.

vi. Particular care must be taken when using tag lines whilst wearing gloves to ensure that the line does not foul the glove.

vii. Tag lines must not be secured or attached in any manner to adjacent structures or equipment. This includes the practice of making a “round turn” on stanchions or similar structures and surging the line to control the load.

viii. Where pre-installed lines are used, consideration should be given to providing personnel with boathooks or similar equipment to retrieve the lines without having to approach the dangerous area in the vicinity of the suspended load. An example of such circumstances would be when lines are attached to a load on the deck of a vessel, the load being then transferred to an offshore installation.
APPENDIX 12 – EXAMPLES OF BAD PRACTICE

Blocked Drain Holes
Damaged Equipment
Poor Packaging
Snagging Cargo
Stacking
Uneven Lifts
CROSS INDUSTRY WORKGROUP

The cross industry workgroup consisted of members from the following companies:

<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Phone</th>
</tr>
</thead>
</table>
| ASCO plc | Regent Centre
Regent Road
Aberdeen
AB11 5NS
Tel: 01224 580396 / 587044 | |
| BP | 1 Wellheads Avenue
Dyce
Aberdeen
AB21 7PB
Tel: 01224 832000 | |
| Shell UK Exploration and Production | 1 Altens Farm Road
Nigg
Aberdeen
AB12 3FY
Tel: 01224 882000 | |
| Venture Production plc | 62 Huntly Street
Aberdeen
AB10 1RS
Tel: 01224 619000 | |
| Total E&P UK plc | Crawpeel Road
Altens Industrial Estate
Aberdeen
AB12 3FG
Tel: 01224 297000 | |
| Talisman Energy (UK) Ltd | Talisman House
163 Holburn Street
Aberdeen
AB10 6BZ
Tel: 01224 352500 | |
| Maersk Oil North Sea UK Ltd | Crawpeel Road
Altens Industrial Estate
Aberdeen
AB12 3LG
Tel: 01224 242000 | |
| ConocoPhillips | Rubislaw House
Anderson Drive
Aberdeen
AB15 6FZ
Tel: 01224 205000 | |
| Britannia Operator Ltd | Royfold House
Hill of Rubislaw
Aberdeen
AB15 6GZ
Tel: 01224 327100 | |
FEEDBACK

Please give your feedback on the document to enable improvements to be made.

Contact details for feedback to follow

RECOGNITION

Many people were involved in the development and review of this document, however we would particularly like to recognise and acknowledge the contribution of the following people:

Tony Littler ASCO
Mark Hardie BP
Keith Dawson Peterson SBS
Kevin Allan Shell UK Exploration and Production
Sandy Bruce Shell UK Exploration and Production
Mike Close Total E&P UK plc
Richard Abbott Venture Production
Helen Leith BP
Ali Davis Weatherford
Derek Birse BOL
Manny Robertson Maersk Oil North Sea Ltd
Dave Morrison Talisman Energy (UK) Ltd
Michael Matthew ConocoPhillips
Alex Knight Helideck Certification Agency Ltd
Mike Langford Bristow Helicopters
Graeme Shepherd Swire Oilfield Services
Andrew Nicholson Ramco
Gary Matthews Enviroco
Geoff Cutler Dominion Gas
Bill England Ferguson Seacabs